• Title/Summary/Keyword: ultimate elongation

Search Result 111, Processing Time 0.027 seconds

Physical Properties of Nylon Textured Yarn according to False Twist Texturing Parameters (I) - Effect of Speed and Draw Ratio - (가연조건에 따른 나일론 섬유의 물성 (I) - 가연속도와 연신비의 영향 -)

  • Hu, Jong-Tea
    • Textile Coloration and Finishing
    • /
    • v.20 no.1
    • /
    • pp.28-35
    • /
    • 2008
  • Texturing is the process of including a characteristic of a natural fiber in a synthetic fiber. The most common method of it the false twist texturing. Nylon textured yarn is primarily manufactured by the disk type. The major process parameters or the disk type false twist machine ratio, disk/yarn, and heater temperature. This study therefore investigated the effects of false twist texturing, especially speed and draw ratio, on the physical properties of nylon textured yarn. The increase of speed was proportional to the increase of unwinding tension, which could reduce the production efficiency by elevating the tension affecting to fiber during the process. In addition, the increase of speed was inversely proportional to the increase of crimp rigidity of nylon textured yarn. Draw ratio was proportionally increased with the increase of tenacity and the reductions of fineness and elongation, showing the influence or draw ratio to the ultimate physical properties of textured yarn.

A Study on Mechanical properties of Aluminized Steel Plate (熔融알루미늄 鍍金한 鋼板의 機械的 性質에 關한 硏究)

  • Kim, Suk-Yoon;Choi, Chong-Sool
    • Journal of the Korean institute of surface engineering
    • /
    • v.13 no.2
    • /
    • pp.81-86
    • /
    • 1980
  • The mechanical properties of aluminized steel were investigated after the JIS SB 41 plates were dipped in molten aluminum bath. (1) The growth rate of iron-aluminum alloy layer was fast in early stage of alumizing, and then gradually decreased with increasing time. However, over the time period above 10 minutes the growth of alloy layer did not occur. (2) The constituent of alloy layer formed on the steel surface was identified to be intermetallic compound of $Fe_2\;Al_5$. (3) The ultimate tensile strength and elongation of aluminized steel showed a nearly constant value over all thickness below about 0.15 mm. However, both properties decreased rapidly in showed a nearly constant value over all thickness above about 0.20 mm. (4) In case of aluminized steel with greater thickness, crack was formed below yield point of base metal, which is considered to be attributed to the alloy layer failure.

  • PDF

Microstructure and Mechanical Properties of Rapidly Solidified Powder Metallurgy Al-Fe-V-Si-X Alloys

  • Genkawa, Takuya;Yamasaki, Michiaki;Kawamura, Yoshihito
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1041-1042
    • /
    • 2006
  • High heat-resistant Al-Fe-V-Si and Al-Fe-V-Si-X rapidly solidified powder metallurgy (RS P/M) alloys have been developed under well-controlled high purity argon gas atmosphere. The $Al_{90.49}Fe_{6.45}V_{0.68}Si_{2.38}$ (at. %) RS P/M alloy exhibited high elevated-temperature strength exceeding 300 MPa and good ductility with elongation of 6 % at 573 K. Reduction of $H_2O$ partical pressure in P/M processing atmosphere led to improvement in mechanical properties of the powder-consolidated alloys under elevated-temperature service conditions. Ti addition to the Al-Fe-V-Si conduced to enhancement of the strength at room temperature. The tensile yeild strength and ultimate strenght were 545 MPa and 722 MPa, respectively.

  • PDF

Effect of Powder Size of Mg-Zn-Y Alloy on the Consolidation

  • Kim, Taek-Soo;Chae, H.J.;Lee, J.K.;Jung, H.G.;Kim, Y.D.;Bae, J.C.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1266-1267
    • /
    • 2006
  • [ $MgZn_{4.3}Y_{0.7}$ ] alloy powders were prepared using an industrial scale gas atomizer, followed by warm extrusion. The powders were almost spherical in shape. The microstructure of powders as atomized and bars as extruded was examined as a function of initial powder size distribution using Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscope (EDS) and X-ray Diffractometer (XRD). The grain sizes were decreased with extruding as well as decreasing the initial powder sizes. Both the ultimate strength and elongation were enhanced as the initial powder sizes were decreased.

  • PDF

Microstructures and Mechanical Properties of Consolidated Mg-Zn-Y Alloy

  • Lee, Jin-Kyu;Kim, Taek-Soo;Jeong, Ha-Guk;Bae, Jung-Chan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1035-1036
    • /
    • 2006
  • The microstructure and mechanical properties of the $Mg_{97}Zn_Y_2$ alloy prepared by spark plasma sintering of gas atomized powders have been investigated. After consolidation, precipitates were observed to form in the ${\alpha}-Mg$ solid solution matrix of the $Mg_{97}Zn_1Y_2$ alloy. These precipitates consisted of $Mg_{12}YZn$ and $Mg_{24}Y_5$ phases. The density of the consolidated bulk Mg-Zn-Y alloy was $1.86g/cm^3$. The ultimate tensile strength and elongation were dependent on the consolidation temperature, which were in the ranges of 280 to 293 MPa and 8.5 to 20.8 %, respectively.

  • PDF

Fabrication and Properties of High Strength Hypereutectic AI-Si Powders by a Gas Atomization Process II. Extrusion and Mechanical Properties (가스분무 공정에 의한 고강도 과공정 AI-Si 합금 분말의 제조 및 특성연구 II. 압출재 제조 및 기계적 특성)

  • Kim, Yong-Jin;Kim, Jin-Chun
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.142-147
    • /
    • 2008
  • The hypereutectic Al-20 wt%Si powders including some amount of Cu, Fe, Mg, Mn were prepared by a gas atomization process. In order to get highly densified Al-Si bulk specimens, the as-atomized and sieved powders were extruded at $500^{\circ}C$, Microstructure and tensile properties of the extruded Al-Si alloys were investigated in this study. Relative density of the extruded samples was over 98%. Ultimate tensile strength (UTS) in stress-strain curves of the extruded powders increased after T6 heat treatments. Elongation of the samples was also increased from 1.4% to 3.2%. The fracture surfaces of the tested pieces showed a fine microstructure and the average grain size was about $1{\mu}m$.

The Variation of Mechanical Properties by Thermomechanical Treatment in Fe-30%Ni-0.1 %C Alloy (가공열처리에 의한 Fe-30% Ni-0.1%C 합금의 기계적성질 변화)

  • Ahn, H.K.;Kim, H.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.2
    • /
    • pp.88-95
    • /
    • 1994
  • In order to compare mechanical properties of ausformed martensite with those of marformed martemsite in Fe-30%Ni-0.1%C alloy and to investigate their strengthening mechanisms, ausformed martensite and marformed martensite were prepared by ausforming treatment and marforming treatment respectively. The microstructures were observed and the quantities of retained austenite, hardness, yield strength, ultimate tensile strength and elongation were examined. The strength of ausformed martensite was mainly increased because of the lattice defects inherited from austenite. The ductility of ausformed martensite was constant at the rate of 7-8% by ductile matrix formation of the retained austenite in spite of the increase in strength. The strength of marformed martensite was increased by the increment in dislocation density, the crossing of transformation twin with deformation twin and the mutual crossing of deformation twin. The ductility of mar formed martensite was slightly lower than that of ausformed martensite, but the strength of mar formed martensite was prominently higher.

  • PDF

A Study on Mechanical Properties of Galvanized Steel Plate (용융아연도금한 강판의 기술적 성질에 관한 연구)

  • 정동원;곽창섭;최종술
    • Journal of the Korean institute of surface engineering
    • /
    • v.16 no.4
    • /
    • pp.153-159
    • /
    • 1983
  • The growth rate equation of Fe-Zn alloy layer was represented by x = Kt, and hence the growth of alloy layer was considered to be controlled by diffusion process. The constituent of alloy layer formed on the steel surface was identified to be intermetallic compound of Fe3Zn10 and FeZn10. The ultimate tensile strength and elongation of galvanized steel showed a nearly constant value at the thickness below about 30$\mu\textrm{m}$, and both properties decreased with increasing thickness above about 30$\mu\textrm{m}$. In the case of galvanied steel with a great thickness of alloy layer, crack was formed below yield point of base metal, which is considered to be attributed to the alloy layer failure.

  • PDF

Gating System Design and Casting Simulation for the Submarine Mast Cover (잠수함 마스트 커버의 주조방안설계 및 주조해석)

  • Chul-Kyu Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.945-952
    • /
    • 2023
  • In this study, the sand casting process was applied to design the gating system and perform casting simulation in order to domestically produce the submarine mast cover. Based on simulation results, casting experiments were conducted to produce a soundness prototype. The design concept of the mast cover's gating system was based on the design of bell casting. By arranging eight tower-type gates in a circle at 45° intervals, the flow of melt flowing into each gate was uniform and did not mix with each other, and the velocity of melt was also uniform. The mast cover made of Ni-Al-Bronze alloy has no unfilled parts. However, small porosities and flow marks occurred on the surface in several places. Yield strength and ultimate tensile strength are 279.3 MPa and 675.7 MPa, respectively, and elongation is 21.2%.

Experimental investigation of carbon steel and stainless steel bolted connections at different strain rates

  • Cai, Yancheng;Young, Ben
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.551-565
    • /
    • 2019
  • A total of 36 carbon steel and stainless steel bolted connections subjected to shear loading at different strain rates was experimentally investigated. The connection specimens were fabricated from carbon steel grades 1.20 mm G500 and 1.90 mm G450, as well as cold-formed stainless steel types EN 1.4301 and EN 1.4162 with nominal thickness 1.50 mm. The connection tests were conducted by displacement control test method. The strain rates of 10 mm/min and 20 mm/min were used. Structural behaviour of the connection specimens tested at different strain rates was investigated in terms of ultimate load, elongation corresponding to ultimate load and failure mode. Generally, it is shown that the higher strain rate on the bolted connection specimens, the higher ultimate load was obtained. The ultimate loads were averagely 2-6% higher, while the corresponding elongations were averagely 8-9% higher for the test results obtained from the strain rate of 20 mm/min compared with those obtained from the lower strain rates (1.0 mm/min for carbon steel and 1.5 mm/min for stainless steel). The connection specimens were generally failed in plate bearing of the carbon steel and stainless steel. It is shown that increasing the strain rate up to 20 mm/min generally has no effect on the bearing failure mode of the carbon steel and stainless steel bolted connections. The test strengths and failure modes were compared with the results predicted by the bolted connection design rules in international design specifications, including the Australian/New Zealand Standard (AS/NZS4600 2018), Eurocode 3 - Part 1.3 (EC3-1.3 2006) and North American Specification (AISI S100 2016) for cold-formed carbon steel structures as well as the American Specification (ASCE 2002), AS/NZS4673 (2001) and Eurocode 3 - Part 1.4 (EC3-1.4 2015) for stainless steel structures. It is shown that the AS/NZS4600 (2018), EC3-1.3 (2006) and AISI S100 (2016) generally provide conservative predictions for the carbon steel bolted connections. Both the ASCE (2002) and the EC3-1.4 (2015) provide conservative predictions for the stainless steel bolted connections. The EC3-1.3 (2006) generally provided more accurate predictions of failure mode for carbon steel bolted connections than the AS/NZS4600 (2018) and the AISI S100 (2016). The failure modes of stainless steel bolted connections predicted by the EC3-1.4 (2015) are more consistent with the test results compared with those predicted by the ASCE (2002).