• Title/Summary/Keyword: ultimate displacement

Search Result 336, Processing Time 0.023 seconds

Design Guideline for Press Tool Structure of Ultra-high Strength Steel Part with Shape Optimization Technique (형상최적화 기법을 이용한 초고강도강판 성형용 프레스 금형의 구조설계 가이드라인)

  • Kang, K.H.;Kwak, J.H.;Bae, S.B.;Kim, S.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.6
    • /
    • pp.372-377
    • /
    • 2017
  • In this paper, an effective design procedure was proposed to design the rib of die structure for auto-body member with ultra-high strength steel (UHSS) having ultimate tensile strength (UTS) of 1.5 GPa. From analysis results of the die structure, structural safety of the die was evaluated with information such as displacement and von-Mises stress. It was concluded that the casting part could be designed in order to reduce tool deformation. A design guideline of the die structure was proposed, especially for the rib structure in the casting part with an optimization scheme and local reinforcement concept. Simulation result following the design guideline fully explained that stability of the tool structure could be obtained simultaneously with weight minimization.

Characteristics of Dynamic Strain Aging(DSA) in SA106Gr.C Piping Steel

  • Kim, Jin-Weon;Kim, In-Sup
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.771-776
    • /
    • 1995
  • Tensile and J-R tests were carried out to estimate the effects of dynamic strain aging(DSA) on SA106Gr.C piping steel. Tensile tests were performed under temperature range RT to $400^{\circ}C$ md strain rates from $1.39{\times}10^{-4}\;to\;6.95{\times}10^{-2}/s$. Fracture toughness was tested in the temperature range RT to $350^{\circ}C$ and load-line displacement rates 0.4 and 4mm/min. The effects of DSA on the tensile properties were clearly observed for phenomena such serrated flow, variation of ultimate and yield stress, and negative stram rate sensitivity. However, the magnitude of serration and strength increase by DSA was relatively small. this may be due to high ratio of Mn to C. In addition, crack initiation resistance, Ji and crack growth resistance, dJ/da were reduced in the range of $200-300^{\circ}C$, where DSA appeared as serrated flow and UTS hardening. The temperature corresponding to minimum fracture resistance was shifted to higher temperature with increasing loading rate.

  • PDF

An Experimental Study on the Flexural Fatigue Behavior of Steel Fiber Reinforced High Strength Concretes Beams with Single Edged Notch (노치를 가진 강섬유 보강 고강도 콘크리트 보의 휨 피로거동에 관한 실험적 연구)

  • 구봉근;김태봉;김흥룡
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.120-125
    • /
    • 1992
  • The fatigue tests were performed on the high strength concrete beams with single edged notch which was reinforced steel fiber. The steel fibers were used 1.0 percent by volume fraction. These were tested consists of constant amplitude tests for different levels of loading. The test program included endurance limit with repect to flexural fatigue and relation of load-CMOD(crack mouth opening displacement). The results of test, it is found from S-N curve that the fatigue strength for a life of 2 million cycles of load was approximately 70percent with respect to the static ultimate strength .

  • PDF

Cyclic-Loading Test of Exterior Deep-Beam Lower-Column Joint in Upper-Wall Lower-Frame Structure (주상복합구조에서 전이보와 외부기둥 접합부의 반복횡하중 실험)

  • 이한선;김상연;고동우;권기혁;최성모
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.851-856
    • /
    • 2000
  • When subjected to the strong earthquake ground motion, upper-wall lower-frame structures have high possibility of the weak-story failure in the lower frame part. Sufficient strength, energy dissipation capacity and ductility should be provided at the joint between the deep beam and the lower column. In this study, a typical structure was selected for a prototype and four 1:2.5 scaled models, representing the subassemblage including the exterior column and the deep beam, were constructed. The transverse reinforcement was designed according to ACI procedure¹ and the procedure proposed by Sheikh². The inelastic behavior of the subassemblages subjected to the cyclic lateral displacement were evaluated through investigation of the ultimate strength, ductility, load-deformation characteristics. From the test of 4 specimens, it is concluded that the specimens designed according to Sheikh's procedure revealed higher ductility than that by ACI procedure.

An Experimental Study on Mechanical Properties of Ductile Concrete with the Kinds of Aggregate (골재종류에 따른 고인성 콘크리트의 역학적 특성에 관한 실험적 연구)

  • Han Byung-chan;Yang Il-seung;Park Wan-shin;Lim Seung-chan;Morii Naoharu;Youn Hyun-do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.61-64
    • /
    • 2005
  • Concrete is one of the principal materials for the structure and it is widely used all over the world, but it shows extremely brittle failure under bending and tensile load. Recently to improve such a poor property, Ductile Fiber Reinforced Cementitious Composites (DFRCC) have been developed, and it are defined by an ultimate strength higher than their first cracking strength and the formation of multiple cracking during the inelastic deformation process. This paper is to estimate experimentally the mechanical properties of ductile concrete with the kinds of used fine and coarse aggregate for purpose of development of high ductile concrete mixing coarse aggregate. As the results, ductile concrete mixed coarse aggregate showed the displacement-hardening behavior under bending load similar to DFRCC, and its compressive and bending performance varied according to the kinds of used coarse aggregate.

  • PDF

The Design Criteria of Elastomeric Bearing for Highway Bridges (교량용 탄성받침의 설계압축응력에 대한 고찰)

  • 전규식
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.136-143
    • /
    • 1998
  • Elastomeric bearing is used as one of the most useful way for isolation structures, because the horizontal stiffness is much lower than the vertical stiffness. The quality of Elastomeric bearing depends on the vulcanization procedure to manufacture, which produces the elasticity of the rubber from the compound of rubber and sulphur. The durability of Elastomeric bearing is affected by the deterioration due to ozone and ultra-violet attack. but the durability during the design life of bridges can be assured by the sufficient size of the bearing in spite of the deterioration in surface. In the design criteria of Elastomeric bearing, the stability of the bearings is evaluated by shear strain due to compression, lateral displacement, and rotation. The question how soft rubber can sustain heavy structure is now able to be solved by Ultimate capacity test of Laminated elastomeric Bearings, which results 1,200kg/$\textrm{cm}^2$ of the max. compressive stress and this shows what a sufficient safety factor Elastomeric bearing has!

  • PDF

Cyclic and static behaviors of CFT modular bridge pier with enhanced bracings

  • Kim, Dongwook;Jeon, Chiho;Shim, Changsu
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1221-1236
    • /
    • 2016
  • Modular structures consist of standardized modules and their connections. A modular bridge pier is proposed to accelerate bridge construction. Multiple concrete-filled steel tubes (CFTs) using commercial steel tubes were chosen as the main members. Buckling restrained bracings and enhanced connection details were designed to prevent premature low-cycle fatigue failure upon cyclic loading. The pier had a height of 7.95 m, widths of 2.5 m and 2.0 m along the strong and weak axis, respectively. Cyclic tests were performed on the modular pier to investigate structural performance. Test results showed that four CFT columns reached yielding without a premature failure of the bracing connections. The ultimate capacity of the modular pier was reasonably estimated based on the plastic-hinge-analysis concept. The modular CFT pier with enhanced bracing showed improved displacement ductility without premature failure at the welding joints.

Seismic assessment of thin steel plate shear walls with outrigger system

  • Fathy, Ebtsam
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.267-282
    • /
    • 2020
  • The seismic performance and failure modes of the dual system of moment resisting frames and thin steel plate shear walls (TSPSWs) without and with one or two outrigger trusses are studied in this paper. These structural systems were utilized to resist vertical and lateral loads of 40-storey buildings. Detailed Finite element models associated with nonlinear time history analyses were used to examine seismic capacity and plastic mechanism of the buildings. The analyses were performed under increased levels of earthquake intensities. The models with one and two outriggers showed good performance during the maximum considered earthquake (MCE), while the stress of TSPSWs in the model without outrigger reached its ultimate value under this earthquake. The best seismic capacity was in favour of the model with two outriggers, where it is found that increasing the number of outriggers not only gives more reduction in lateral displacement but also reduces stress concentration on thin steel plate shear walls at outrigger floors, which caused the early failure of TSPSWs in model with one outrigger.

Flexural ductility of HSC members

  • Maghsoudi, A.A.;Bengar, H. Akbarzadeh
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.195-212
    • /
    • 2006
  • In seismic areas, ductility is an important factor in design of high strength concrete (HSC) members under flexure. A number of twelve HSC beams with different percentage of ${\rho}$ & ${\rho}^{\prime}$ were cast and incrementally loaded under bending. The effect of ${\rho}^{\prime}$ on ductility of members were investigated both qualitatively and quantitatively. During the test, the strain on the concrete middle faces, on the tension and compression bars, and also the deflection at different points of the span length were measured up to failure. Based on the obtained results, the serviceability and ultimate behavior, and especially the ductility of the HSC members are more deeply reviewed. Also a comparison between theoretical and experimental results are reported here.

Analysis of Failure Mode of Geotextile Container for Urgent Rehabilitation of Railroad Bed (철도노반 긴급복구를 위한 토목섬유 컨테이너의 파괴형태 분석)

  • 신은철;이명호;이준철
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.608-613
    • /
    • 2002
  • This study was under taken as an analysis of failure mode in a railroad bed reconstructed with miniaturized Geotextile Container after being destroyed by heavy rain. It assesses the practical use of the bag shaped Geotextile Container method in the rehabilitation of destroyed roadbeds. The failure mode was assessed using the laboratory model tests to determine the following criteria: Strain of Geotextile Container, Vertical & Horizontal displacements of Geotextile Container layer, and the transmitting load effects due to the applied load. The Geotextile Container layer was failed as a Block Failure type, although there was some variation in the results between the saturated and unsaturated conditions. The main failure was caused by the reduction of the interface friction between Geotextile Containers. The result of this mobilizes the significant horizontal displacement and the ultimate failure of the Geotextile Container layer. The strain on the wet Geotextile Container was occurred about two times greater than that of dry condition.

  • PDF