• 제목/요약/키워드: ultimate cross section

검색결과 128건 처리시간 0.043초

Strength and strain enhancements of concrete columns confined with FRP sheets

  • Campione, G.;Miraglia, N.;Papia, M.
    • Structural Engineering and Mechanics
    • /
    • 제18권6호
    • /
    • pp.769-790
    • /
    • 2004
  • The compressive behavior up to failure of short concrete members reinforced with fiber reinforced plastic (FRP) is investigated. Rectangular cross-sections are analysed by means of a simplified elastic model, able also to explain stress-concentration. The model allows one to evaluate the equivalent uniform confining pressure in ultimate conditions referred to the effective confined cross-section and to the effective stresses in FRP along the sides of section; consequently, it makes it possible to determine ultimate strain and the related bearing capacity of the confined member corresponding to FRP failure. The effect of local reinforcements constitute by single strips applied at corners before the continuous wrapping and the effect of round corners are also considered. Analytical results are compared to experimental values available in the literature.

Stiffening evaluation of flat elements towards stiffened elements under axial compression

  • Manikandan, P.;Arun, N.
    • Advances in Computational Design
    • /
    • 제3권1호
    • /
    • pp.71-86
    • /
    • 2018
  • Thin-walled cross-sections can be optimized to enhance their resistance and progress their behaviour, leading to more competent and inexpensive structural system. The aim of this study is to afford a methodology that would facilitate progress of optimized cold formed steel (CFS) column section with maximum ultimate strength for practical applications. The proposed sections are designed to comply with the geometrical standards of pre-qualified column standards for CFS structures as well as with the number of industrialized and practical constraints. The stiffening evaluation process of CFS lipped channel columns, a five different cross section are considered. The experimental strength and behaviour of the proposed sections are verified by using the finite element analysis (FEA). A series comprehensive parametric study is carried out covering a wide range of section slenderness and overall slenderness ratio of the CFS column with and without intermediate web stiffeners. The ultimate strength of the sections is determined based on the Direct Strength Specification and other design equation available from the literature for CFS structures. A modified design method is proposed for the DSM specification. The results indicate that the CFS column with complex edge and intermediate web stiffeners provides an ultimate strength which is up to 78% higher than standard optimized shapes with the same amount of cross sectional area.

Dimensionless analysis of composite rectangular and circular RC columns

  • Massumi, Ali;Badkoubeh, Alireza
    • Steel and Composite Structures
    • /
    • 제19권2호
    • /
    • pp.327-348
    • /
    • 2015
  • A numerical procedure is presented that provides ultimate curvature and moment domains for composite rectangular and circular cross-sections of reinforced concrete columns with or without an embedded steel section subjected to combined axial loading and biaxial bending. The stress resultants for the concrete and reinforcement bars are calculated using fiber analysis and the stress resultants for the encased structural steel are evaluated using an exact integration of the stress-strain curve over the area of the steel section. A dimensionless formula is proposed that can be used for any section with similar normalized geometric and mechanical parameters. The contribution of each material to the bearing capacity of a section (resistance load and moments) is calculated separately so that the influence of each geometric or mechanical parameter on the bearing capacity can be investigated separately.

Effect of element interaction and material nonlinearity on the ultimate capacity of stainless steel cross-sections

  • Theofanous, M.;Gardner, L.
    • Steel and Composite Structures
    • /
    • 제12권1호
    • /
    • pp.73-92
    • /
    • 2012
  • The effect of element interaction and material nonlinearity on the ultimate capacity of stainless steel plated cross-sections is investigated in this paper. The focus of the research lies in cross-sections failing by local buckling; member instabilities, distortional buckling and interactions thereof with local buckling are not considered. The cross-sections investigated include rectangular hollow sections (RHS), I sections and parallel flange channels (PFC). Based on previous finite element investigations of structural stainless steel stub columns, parametric studies were conducted and the ultimate capacity of the aforementioned cross-sections with a range of element slendernesses and aspect ratios has been obtained. Various design methods, including the effective width approach, the direct strength method (DSM), the continuous strength method (CSM) and a design method based on regression analysis, which accounts for element interaction, were assessed on the basis of the numerical results, and the relative merits and weaknesses of each design approach have been highlighted. Element interaction has been shown to be significant for slender cross-sections, whilst the behaviour of stocky cross-sections is more strongly influenced by the material strain-hardening characteristics. A modification to the continuous strength method has been proposed to allow for the effect of element interaction, which leads to more reliable ultimate capacity predictions. Comparisons with available test data have also been made to demonstrate the enhanced accuracy of the proposed method and its suitability for the treatment of local buckling in stainless steel cross-sections.

SWATH선의 최종 횡굽힘강도 해석 (Ultimate Transverse Bending Strength Analysis of a SWATH Ship)

  • 박치모
    • 한국해양공학회지
    • /
    • 제6권2호
    • /
    • pp.103-112
    • /
    • 1992
  • The calculation method which takes into account the shear lag effects on the ultimate transverse bending moment of a SWATH(Small Waterplane Area Twin Hull) ship has been developed. In case of the ultimate bending strength analysis of conventional monohull ships and general box girder structures, the hypothesis that plane section remains plane after bending can be employed but not in the case of the structures having wide flange. For the ultimate bending strength analysis of such structures, a new method which can take into account the effect of shear lag on the ultimate bending strength has been developed by adopting more reasonable assumption that warping distortion of the section takes place inthe same way as the actual stress distribution. Finally, the proposed method has been applied to a a SWATH cross deck structure.

  • PDF

Finite element modeling of RC columns made of inferior concrete mix strengthened with CFRP sheets

  • Khaled A. Alawi, Al-Sodani;Muhammad Kalimur ,Rahman;Mohammed A., Al-Osta;Omar S. Baghabra, Al-Amoudi
    • Earthquakes and Structures
    • /
    • 제23권5호
    • /
    • pp.403-417
    • /
    • 2022
  • Reinforced concrete (RC) structures with low-strength RC columns are rampant in several countries, especially those constructed during the early 1960s and 1970s. The weakness of these structures due to overloading or some natural disasters such as earthquakes and building age effects are some of the main reasons to collapse, particularly with the scarcity of data on the impact of aspect ratio and corner radius on the confinement effectiveness. Hence, it is crucial to investigate if these columns (with different aspect ratios) can be made safe by strengthening them with carbon fiber-reinforced polymers (CFRP) sheets. Therefore, experimental and numerical studies of CFRP-strengthened low-strength reinforced concrete short rectangular, square, and circular columns were studied. In this investigation, a total of 6 columns divided into three sets were evaluated. The first set had two circular cross-sectional columns, the second set had two square cross-section columns, and the third set has two rectangular cross-section columns. Furthermore, FEM validation has been conducted for some of the experimental results obtained from the literature. The experimental results revealed that the confinement equations for RC columns as per both CSA and ACI codes could give incorrect results for low-strength concrete. The control specimen (unstrengthened ones) displayed that both ACI and CSA equations overestimate the ultimate strength of low-strength RC columns by order of extent. For strengthened columns with CFRP, the code equations of CSA and ACI code overestimate the maximum strength by around 6 to 13% and 23 to 29%, respectively, depending on the cross-section of the column (i.e., square, rectangular, or circular). Results of finite element models (FEMs) showed that increasing the layer number of new commonly CFRP type (B) from one to 3 for circular columns can increase the column's ultimate loads by around eight times compared to unjacketed columns. However, in the case of strengthened square and rectangular columns with CFRP, the increase of the ultimate loads of columns can reach up to six times and two times, respectively.

Beam-column behavior of concrete filled steel tubes

  • Campione, G.;Scibilia, N.
    • Steel and Composite Structures
    • /
    • 제2권4호
    • /
    • pp.259-276
    • /
    • 2002
  • In the present investigation the experimental and theoretical flexural and compressive behavior of short tubular steel columns filled with plain concrete and fiber-reinforced concrete (FRC) was examined. For a given length of the members, the effects of different geometry and dimensions of the transverse cross-section (square and circular) were investigated. Constituent materials were characterized through direct tensile tests on steel coupons and through compressive and split tension tests on concrete cylinders. Load-axial shortening and load-deflection curves were recorded for unfilled and composite members. Finally, simplified expressions for the calculus of the load-deflection curves based on the cross-section analysis were given and the ultimate load of short columns was predicted.

Isolated RC wall subjected to biaxial bending moment and axial force

  • Park, Honggun
    • Structural Engineering and Mechanics
    • /
    • 제9권5호
    • /
    • pp.469-482
    • /
    • 2000
  • A numerical study using nonlinear finite element analysis is performed to investigate the behavior of isolated reinforced concrete walls subjected to combined axial force and in-plane and out-of-plane bending moments. For a nonlinear finite element analysis, a computer program addressing material and geometric nonlinearities was developed. Through numerical studies, the internal force distribution in the cross-section is idealized, and then a new design method, different from the existing methods based on the plane section hypothesis was developed. According to the proposed method, variations in the interaction curve of the in-plane bending moment and axial force depends on the range of the permissible axial force per unit length, that is determined by a given amount of out-of-plane bending moment. As the out-of-plane bending moment increases, the interaction curve shrinks, indicating a decrease in the ultimate strength. The proposed method is then compared with an existing method, using the plane section hypothesis. Compared with the proposed method, the existing method overestimates the ultimate strength for the walls subjected to low out-of-plane bending moments, while it underestimates the ultimate strength for walls subject to high out-of-plane bending moments. The proposed method can address the out-of-plane local behavior of the individual wall segments that may govern the ultimate strength of the entire wall.

Influence of spacers on ultimate strength of intermediate length thin walled columns

  • Anbarasu, M.;Sukumar, S.
    • Steel and Composite Structures
    • /
    • 제16권4호
    • /
    • pp.437-454
    • /
    • 2014
  • The influence of spacers on the behaviour and ultimate capacity of intermediate length CFS open section columns under axial compression is investigated in this paper. The focus of the research lies in the cross- section predominantly, failed by distortional buckling. This paper made an attempt to either delay or eliminate the distortional buckling mode by the introduction of transverse elements referred herein as spacers. The cross-sections investigated have been selected by performing the elastic buckling analysis using CUFSM software. The test program considered three different columns having slenderness ratios of 35, 50 & 60. The test program consisted of 14 pure axial compression tests under hinged-hinged end condition. Models have been analysed using finite element simulations and the obtained results are compared with the experimental tests. The finite element package ABAQUS has been used to carry out non-linear analyses of the columns. The finite element model incorporates material, geometric non-linearities and initial geometric imperfection of the specimens. The work involves a wide parametric study in the column with spacers of varying depth and number of spacers. The results obtained from the study shows that the depth and number of spacers have significant influence on the behaviour and strength of the columns. Based on the nonlinear regression analysis the design equation is proposed for the selected section.

뒤틀림변형을 받는 관형단면의 극한강도 및 거동에 관한 연구 (A Study on the Ultimate Strength and Behavior of Circular Section Subjected to Cross-Sectional Distortion)

  • 김우범
    • 대한토목학회논문집
    • /
    • 제14권1호
    • /
    • pp.83-91
    • /
    • 1994
  • 뒤틀림을 받는 손상 관형 단면의 강도 및 거동을 파악하기 위한 효율적인 해석기법을 제시하였다. 단면의 뒤틀림을 고려키 위하여 유한요소 해석법을 이용하였으며 부재의 유한요소 해석시 발생하는 국부 불안정에 의한 하중-변형 응답의 발산 문제를 해결하기 위하여 손상부위만에 대하여 유한요소해석을 수행, 모멘트-곡률 관계를 일반화하여 이를 부재해석의 입력자료로 제공하였다. 광범위한 실용판형 부재를 포함하는 데이타베이스를 구축하여 이에 대한 복회귀분석을 수행, 일반화된 모멘트-곡률관계식을 제시하여 연구의 실용성을 제고 하였다.

  • PDF