• Title/Summary/Keyword: ubiquitin

Search Result 345, Processing Time 0.035 seconds

DNA-Damage Inducible 1 is a Property of Human Non-Small Cell Lung Cancer

  • Lee, Ji-Yeon;Kang, Eun-Sil;Lim, Beom-Jin;Chang, Yoon-Soo;Kim, Se-Kyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.72 no.2
    • /
    • pp.124-131
    • /
    • 2012
  • Background: DNA damage-inducible 1 (Ddi1), one of the ubiquitin-like and ubiquitin-associated family of proteins, may function in the regulation of the ubiquitin-proteasome pathway, which has been validated as a target for antineoplastic therapy. We investigated Ddi1 expression in human lung cancer tissues and evaluated the relationship of this expression pattern with clinicopathological factors in patients with non-small-cell lung cancer (NSCLC). Methods: Ddi1 expression was examined by immunohistochemistry in tumor tissues from 97 patients with stage I NSCLC, who had undergone curative surgical resection at two tertiary referral hospitals from 1993~2004. None of the patients received preoperative chemotherapy and/or radiation therapy. Results: Thirty-nine (40.2%) of the 97 cases were positive for Ddi1. Ddi1 expression was dominantly seen in cytoplasm rather than in the nuclei of cancer cells in all histological types, whereas adjacent nontumoral lung tissue showed negative Ddi1 staining in most cases. Ddi1 expression tended to increase in well-differentiated tumors but without statistical significance. Positive Ddi1 expression was associated with a tendency for better disease-free survival and disease-specific survival, although the difference was not significant. Conclusion: Ddi1 expression is a property of NSCLC. Because Ddi1 could be a potential target for cancer therapy, more research is needed to evaluate its role in NSCLC.

Facilitation of SUMO (Small Ubiquitin-like Modifier) Modification at Tau 340-Lys Residue (a Microtubule-associated Protein) through Phosphorylation at 214-Ser Residue

  • Lee, Eun-Jeoung;Hyun, Sung-Hee;Chun, Jae-Sun;Ahn, Hye-Rim;Kang, Sang-Sun
    • Animal cells and systems
    • /
    • v.11 no.1
    • /
    • pp.39-50
    • /
    • 2007
  • Tau plays a role in numerous neuronal processes, such as vesicle transport, microtubule-plasma membrane interaction and intracellular localization of proteins. SUMO (Small Ubiquitin-like Modifier) modification (SUMOylation) appears to regulate diverse cellular processes including nuclear transport, signal transduction, apoptosis, autophagy, cell cycle control, ubiquitin-dependent degradation, as well as gene transcription. We noticed that putative SUMOylation site is localized at $^{340}K$ of $Tau(^{339}VKSE^{342})$ with the consensus sequence information (${\Phi}KxE$ ; where ${\Phi}$ represents L, I, V or F and x is any amino acid). In this report, we demonstrated that $^{340}K$ of Tau is the SUMOylation site and that a point mutant of Tau S214E (an analog of the phospho $^{214}S$ Tau) promotes its SUMOylation at $^{340}K$ and its nuclear or nuclear vicinity localization, by co-immunoprecipitation and confocal microscopy analysis. Further, we demonstrate that the Tau S214E (neither Tau S214A nor Tau K340R) mutant increases its protein stability. However, the SUMOylation at $^{340}K$ of Tau did not influence cell survival, as determined by FACS analysis. Therefore, our results suggested that the phosphorylation of Tau on $^{214}S$ residue promotes its SUMOylation on $^{340}K$ residue and nuclear vicinity localization, and increases its stability, without influencing cell survival.

N-recognins UBR1 and UBR2 as central ER stress sensors in mammals

  • Ly Thi Huong Luu Le;Seoyoung Park;Jung Hoon Lee;Yun Kyung Kim;Min Jae Lee
    • Molecules and Cells
    • /
    • v.47 no.1
    • /
    • pp.100001.1-100001.8
    • /
    • 2024
  • In eukaryotes, a primary protein quality control (PQC) process involves the destruction of conformationally misfolded proteins through the ubiquitin-proteasome system. Because approximately one-third of eukaryotic proteomes fold and assemble within the endoplasmic reticulum (ER) before being sent to their destinations, the ER plays a crucial role in PQC. The specific functions and biochemical roles of several E3 ubiquitin ligases involved in ER-associated degradation in mammals, on the other hand, are mainly unknown. We identified 2 E3 ligases, ubiquitin protein ligase E3 component N-recognin 1 (UBR1) and ubiquitin protein ligase E3 component N-recognin 2 (UBR2), which are the key N-recognins in the N-degron pathway and participate in the ER stress response in mammalian cells by modulating their stability. Cells lacking UBR1 and UBR2 are hypersensitive to ER stress-induced apoptosis. Under normal circumstances, these proteins are polyubiquitinated through Lys48-specific linkages and are then degraded by the 26S proteasome. In contrast, when cells are subjected to ER stress, UBR1 and UBR2 exhibit greater stability, potentially as a cellular adaptive response to stressful conditions. Although the precise mechanisms underlying these findings require further investigation, our findings show that cytoplasmic UBR1 and UBR2 have anti-ER stress activities and contribute to global PQC in mammals. These data also reveal an additional level of complexity within the mammalian ER-associated degradation system, implicating potential involvement of the N-degron pathway.

Structural Characterization of Mouse HAUSP, a Proteolysis Regulator of p53

  • Lee, Hye-Jin;Yoo, Kyong-Jai;Baek, Kwang-Hyun
    • Animal cells and systems
    • /
    • v.8 no.3
    • /
    • pp.205-212
    • /
    • 2004
  • The tumor suppressor protein p53 is stabilized by the herpes-virus-associated ubiquitin-specific protease (HAUSP), a deubiquitinating enzyme. We previously isolated and characterized a mouse orthologue of HAUSP, mHAUSP. mHAUSP cDNA consisted of 3,312 bp encodes 1,103 amino acids with a molecular weight of approximately 135 kDa containing highly conserved Cys, Asp (I), His, and Asn/Asp (II) domains. In this study, we carried out site-directed mutagenesis of 6 conserved amino acids (Cys224, Gln231, Asp296, His457, His465, and Asp482) in Cys box, QQD box, and His box. Interestingly, the conserved Gln 231 was not essential for the catalytic activity of mHAUSP. However, the other conserved amino acids were required for deubiquitinating activity of mHAUSP. We performed isopeptidase assay and confirmed that mHAUSP is able to remove ubiquitin from ubiquitinated substrates. In addition, we observed that mHAUSP induces apoptosis in HeLa cells.

A Variety of Activation Methods Employed in “Activated-Ion” Electron Capture Dissociation Mass Spectrometry: A Test against Bovine Ubiquitin 7+ Ions

  • Oh, Han-Bin;McLafferty, Fred W.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.389-394
    • /
    • 2006
  • Fragmentation efficiencies of various ‘activated-ion’ electron capture dissociation (AI-ECD) methods are compared for a model system of bovine ubiquitin 7+ cations. In AI-ECD studies, sufficient internal energy was given to protein cations prior to ECD application using IR laser radiation, collisions, blackbody radiation, or in-beam collisions, in turn. The added energy was utilized in increasing the population of the precursor ions with less intra-molecular noncovalent bonds or enhancing thermal fluctuations of the protein cations. Removal of noncovalent bonds resulted in extended structures, which are ECD friendly. Under their best conditions, a variety of activation methods showed a similar effectiveness in ECD fragmentation. In terms of the number of fragmented inter-residue bonds, IR laser/blackbody infrared radiation and ‘in-beam’ activation were almost equally efficient with ~70% sequence coverage, while collisions were less productive. In particular, ‘in-beam’ activation showed an excellent effectiveness in characterizing a pre-fractionated single kind of protein species. However, its inherent procedure did not allow for isolation of the protein cations of interest.

Calculations of Free Energy Surfaces for Small Proteins and a Protein-RNA Complex Using a Lattice Model Approach

  • Lee, Eun-Sang;Jung, Youn-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.3051-3056
    • /
    • 2011
  • We calculate the free energy surfaces for two small proteins and a protein-RNA complex system by using a lattice model approach. In particular, we employ the Munoz-Eaton model, which is a native-structure based statistical mechanical model for studying protein folding problem. The model can provide very useful insights into the folding mechanisms by allowing one to calculate the free energy surfaces efficiently. We first calculate the free energy surfaces of ubiquitin and BBL, using both approximate and recently developed exact solutions of the model. Ubiquitin exhibits a typical two-state folding behavior, while BBL downhill folding in our study. We then extend the method to study of a protein-RNA complex. In particular, we focus on PAZ-siRNA complex. In order to elucidate the interplay between folding and binding kinetics for this system we perform comparative studies of PAZ only, PAZ-siRNA complex and two mutated complexes. We find that folding and binding are strongly coupled with each other and the bound PAZ is more stable than the unbound PAZ. Our results also suggest that the binding sites of the siRNA may serve act as a nucleus in the folding process.

RING E3 ligases: key regulatory elements are involved in abiotic stress responses in plants

  • Cho, Seok Keun;Ryu, Moon Young;Kim, Jong Hum;Hong, Jeong Soo;Oh, Tae Rin;Kim, Woo Taek;Yang, Seong Wook
    • BMB Reports
    • /
    • v.50 no.8
    • /
    • pp.393-400
    • /
    • 2017
  • Plants are constantly exposed to a variety of abiotic stresses, such as drought, heat, cold, flood, and salinity. To survive under such unfavorable conditions, plants have evolutionarily developed their own resistant-mechanisms. For several decades, many studies have clarified specific stress response pathways of plants through various molecular and genetic studies. In particular, it was recently discovered that ubiquitin proteasome system (UPS), a regulatory mechanism for protein turn over, is greatly involved in the stress responsive pathways. In the UPS, many E3 ligases play key roles in recognizing and tethering poly-ubiquitins on target proteins for subsequent degradation by the 26S proteasome. Here we discuss the roles of RING ligases that have been defined in related to abiotic stress responses in plants.

Expression and Purification of Ubiquitin-Specific Protease (UBP1) of Saccharomyces cerevisiae in Recombinant Escherichia Coli

  • Na, Kang-In;Kim, Myoung-Dong;Min, Won-Ki;Kim, Jeong-Ah;Lee, Woo-Jong;Kim, Dae-Ok;Park, Kyung-Moon;Seo, Jin-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.599-602
    • /
    • 2005
  • Truncated form of UBP1, an ubiquitin-specific protease of Saccharomyces cerevisiae, was overexpressed in Escherichia coli. The hexahistidine residue $(His_6)$ was fused to the N-terminus of truncated UBP1 and the corresponding recombinant protein was purified with high yield by immobilized metal affinity chromatography. The truncated form of UBP1 protein was functional to cleave ubiquitinated human growth hormone as substrate. Effects of pH and temperature were investigated in order to optimize deubiquitinating reactions for the truncated UBP1. Optimum temperature and pH for the cleavage reaction were $40^{\circ}C$ and pH 8.0, respectively.