• 제목/요약/키워드: tyrosyl phosphatase

검색결과 3건 처리시간 0.017초

인간유래의 dual-specificity protein phosphatase, DUSP28의 활성분석 (Characterization of a Dual-Specificity Protein Phosphatase, Human DUSP28)

  • 정대균;김송이;윤정훈;김재훈
    • 생명과학회지
    • /
    • 제21권1호
    • /
    • pp.31-35
    • /
    • 2011
  • Dual-specificity protein phosphatase (DUSP)들은 인산화된 티로신 잔기와 인산화된 세린 또는 트레오닌 잔기를 탈인산화시키는 단백질 탈인산화효소 군을 이루고 있으며, 대부분의 DUSP들은 세포의 생존이나 분화에 관여하고 있다. 본 연구에서는 잘 알려지지 않은 인간 유래의 dual-specificity protein phosphatase인 DUSP28을 인간신장 cDNA에서 분리하였다. 대장균에서 생산된 재조합단백질은 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP)에 대하여 좋은 활성을 보였다. 다양한 저해제와 2가 금속이온들이 DUSP28의 활성에 미치는 영향을 조사하였다. 다른 DUSP들에서와는 다르게, $Zn^{2+}$은 DUSP28의 탈인산화활성을 강하게 억제하였다. 이러한 결과로부터 DUSP28이 Zn과 연관된 신호전달경로에 관여할 것으로 추정된다. 더욱이, DUSP28은 인산화된 티로신잔기를 더욱 선호하는 경향이 있는 것으로 나타났고, 이는 세포 내에서도 비슷한 작용을 할 것으로 예상된다.

Cloning and Functional Characterization of Ptpcd2 as a Novel Cell Cycle Related Protein Tyrosine Phosphatase that Regulates Mitotic Exit

  • Zineldeen, Doaa H.;Wagih, Ayman A.;Nakanishi, Makoto
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권6호
    • /
    • pp.3669-3676
    • /
    • 2013
  • Faithful transmission of genetic information depends on accurate chromosome segregation as cells exit from mitosis, and errors in chromosomal segregation are catastrophic and may lead to aneuploidy which is the hallmark of cancer. In eukaryotes, an elaborate molecular control system ensures proper orchestration of events at mitotic exit. Phosphorylation of specific tyrosyl residues is a major control mechanism for cellular proliferation and the activities of protein tyrosine kinases and phosphatases must be integrated. Although mitotic kinases are well characterized, phosphatases involved in mitosis remain largely elusive. Here we identify a novel variant of mouse protein tyrosine phosphatase containing domain 1 (Ptpcd1), that we named Ptpcd2. Ptpcd1 is a Cdc14 related centrosomal phosphatase. Our newly identified Ptpcd2 shared a significant homology to yeast Cdc14p (34.1%) and other Cdc14 family of phosphatases. By subcellular fractionation Ptpcd2 was found to be enriched in the cytoplasm and nuclear pellets with catalytic phosphatase activity. By means of immunofluorescence, Ptpcd2 was spatiotemporally regulated in a cell cycle dependent manner with cytoplasmic abundance during mitosis, followed by nuclear localization during interphase. Overexpression of Ptpcd2 induced mitotic exit with decreased levels of some mitotic markers. Moreover, Ptpcd2 failed to colocalize with the centrosomal marker ${\gamma}$-tubulin, suggesting it as a non-centrosomal protein. Taken together, Ptpcd2 phosphatase appears a non-centrosomal variant of Ptpcd1 with probable mitotic functions. The identification of this new phosphatase suggests the existence of an interacting phosphatase network that controls mammalian mitosis and provides new drug targets for anticancer modalities.

Modulatory Effect of the Tyrosine Kinase and Tyrosine Phosphatase on the ACh-activated $K^{+}$ Channel in Adult Rat Atrial Cells

  • Chang, Kyeong-Jae;Rhie, Sang-Ho;Heo, Ilo;Kim, Yang-Mi;Haan, Jae-Hee;Hong, Seong-Geun
    • The Korean Journal of Physiology
    • /
    • 제30권2호
    • /
    • pp.209-218
    • /
    • 1996
  • Acetylcholine (ACh) activates the inwardly rectifying muscarinic $K^{+}$ channel in rat atrial cells via pertussis toxin (PTX)-sensitive G-protein ($G_k$) coupled with the muscarinic receptor (mAChR). Although this $K^{+}\;(K_{ACh})$ channel function has reported to be modulated by the phosphorylation process, a kinase and phosphatase involved in these processes are still unclear. Since either PKA or PKC was not effective on this ATP-modulation, the present study examined the possible involvement of the protein tyrosine kinase (PTK) and protein tyrosine phosphatase (PTP) in the function of the $K_{ACh}$ Channel. In the inside-out (I/O) patch preparation excised from the adult rat atrial cell, when activated by 10 ${\mu}M$ ACh in the pipette and 100 ${\mu}M$ GTP in the bath, the mean open time (${\tau}_{o}$) and the channel activity ($K_{ACh}$) was 1.13 ms (n=5) and 0.19 (n=6), respectively. Following the application of 1 mM ATP into the bath, ${\tau}_{o}$ increased by 34% (1.54 ms, n=5) and $K_{ACh}$ by 66% (0.28, n=6). Channel function elevated by ATP was lasted after washout of ATP. However, this ATP-induced increase in the $K_{ACh}$ channel function did not occur in pretreated cells with genistein ($50{\sim}100 {\mu}M$), a selective PTK inhibitor, but occurred in pretreated cells with equimolar daidzein, a negative control of the genistein. On the contrary, PTP which acts on tyrosine residue conversely reversed both ATP-induced increased ${\tau}_{o}$ by 32% (1.20 ms, n=3) and $K_{ACh}$ by 41% (0.15, n=3), respectively. Taken together, these results suggest that $K_{ACh}$ channel may, at least partly, be regulated by the tyrosyl phosphorylation, although it is unclear where this process exerts on the muscarinic signal transduction pathway comprising the mAChR-$G_{k}$-the $K_{ACh}$ channel.

  • PDF