Browse > Article
http://dx.doi.org/10.5352/JLS.2011.21.1.31

Characterization of a Dual-Specificity Protein Phosphatase, Human DUSP28  

Jeong, Dae-Gwin (Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kim, Song-Yi (Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology)
Yun, Jeong-Hun (Faculty of Biotechnology, College of Applied Life Science, Jeju National University)
Kim, Jae-Hoon (Faculty of Biotechnology, College of Applied Life Science, Jeju National University)
Publication Information
Journal of Life Science / v.21, no.1, 2011 , pp. 31-35 More about this Journal
Abstract
Dual-specificity protein phosphatases (DUSPs) constitute a family of protein phosphatase characterized by the ability to dephosphorylate phospho-tyrosyl and phospho-seryl/threonyl residues. Most DUSPs are involved in regulation of cell survival and differentiation. In this study, a human dual-specificity protein phosphatase, DUSP28, was isolated from a human kidney cDNA. The recombinant protein was successfully produed in E.coli and showed sufficient phosphatase activity toward DiFMUP (6,8-difluoro-4-methylumbelliferyl phosphate). Various phosphatase inhibitors and divalent metals were tested for their effects on the DUSP28 phosphatase activity. As a result, $Zn^{2+}$ was found to strongly inhibit DUSP28 phosphatase activity, suggesting DUSP28 is involved in Zn-related signal transduction pathway. Furthermore, the DUSP28 protein preferred phospho-tyrosyl residues to phospho-threonyl residues, implying its physiological roles in the cellular process.
Keywords
Dual-specificity protein phosphatase 28; recombinant protein; 6,8-difluoro-4-methylumbelliferyl phosphate; phosphatase activity; inhibitors;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Maret, W., C. Jacob, B. L. Vallee, and E. H. Fischer. 1999. Inhibitory sites in enzymes: zinc removal and reactivation by thionein. Proc. Natl. Acad. Sci. U.S.A. 96, 1936-1940.   DOI
2 Nakamura, K., H. Shima, M. Watanabe, T. Haneji, and K. Kikuchi. 1999. Molecular cloning and characterization of a novel dual-specificity protein phosphatase possibly involved in spermatogenesis. Biochem. J. 344, 41404-41413.
3 Todd, J. L., K. G. Tanner, and J. M. Denu. 1999. Extracellular regulated kinases (ERK) 1 and ERK2 are authentic substrates for the dual-specificity protein-tyrosine phosphatase VHR. A novel role in down-regulating the ERK pathway. J. Biol. Chem. 274, 13271-13280.   DOI
4 Treisman, R. 1996. Regulation of transcription by MAP kinase cascades. Curr. Opin. Cell Biol. 8, 205-215.   DOI
5 Wu, Q., Y. Li, S. Gu, N. Li, D. Zheng, D. Li, Z. Zheng, C. Ji, Y. Xie, and Y. Mao. 2004. Molecular cloning and characterization of a novel dual-specificity phosphatase 23 gene from human fetal brain. Int. J. Biochem. Cell Biol. 36, 154-1553.   DOI
6 Yu, M., F. Xiang, R. P. Beyer, F. M. Farin, T. K. Bammler, and M. T. Chin. 2010. Transcription Factor CHF1/Hey2 Regulates Specific Pathways in Serum Stimulated Primary Cardiac Myocytes: Implications for Cardiac Hypertrophy. Current Genomics 11, 287-296.   DOI
7 Yuvaniyama, J., J. M. Denu, J. E. Dixon, and M. A. Saper. 1996. Crystal structure of the dual specificity protein phosphatase VHR. Science 272, 1328-1331.   DOI
8 Claiborn, C. S., T. Larson, and L. Sheppard. 2002. Testing the metals hypothesis in Spokane, Washington. Environ. Health Perspect 110, 547-552.   DOI   ScienceOn
9 Farooq, A. and M. M. Zhou. 2004. Structure and regulation of MAPK phosphatases. Cellular Signal 16, 769-779.   DOI
10 Gordon, T., L. C. Chen, J. M. Fine, R. B. Schlesinger, W. Y. Su, T. A. Kimmel, and M. O. Amdur. 1992. Pulmonary effects of inhaled zinc oxide in human subjects, guinea pigs, rats, and rabbits. Am. Ind. Hyg. Assoc. J. 53, 503-509.   DOI   ScienceOn
11 Kim, J. H., D. Y. Shin, M. H. Han, and M. U. Choi. 2001. Mutational and kinetic evaluation of conserved His-123 in dual specificity protein-tyrosine phosphatase vaccinia H1-related phosphatase: participation of Tyr-78 and Thr-73 residues in tuning the orientation of His-123. J. Biol. Chem. 276, 27568-27574.   DOI
12 Kim, J. H., H. Cho, S. E. Ryu, and M. U. Choi. 2000. Effects of metal ions on the activity of protein tyrosine phosphatase VHR: highly potent and reversible oxidative inactivation by $Cu^{2+}$ ion. Arch. Biochem. Biophys. 382, 72-80.   DOI
13 Kim, S. J., D. G. Jeong, T. S. Yoon, J. H. Son, S. Kim Cho, S. E. Ryu, and J. H. Kim. 2007. Crystal structure of human TMDP, a testis-specific dual specificity protein phosphatase: implications for substrate specificity. Proteins 66, 239-245.
14 Arimura, Y. and J. Yagi. 2010. Comprehensive expression profiles of genes for protein tyrosine phosphatases in immune cells. Sci. Signal. 3, 11-18.
15 Kim, Y. M., W. Reed, W. Wu, P. A. Bromberg, L. M. Graves, and J. M. Samet. 2006. $Zn2^+-induced$ IL-8 expression involves AP-1, JNK, and ERK activities in human airway epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 290, 1028-1035.   DOI
16 Kodavanti, U. P., M. C. Schladweiler, A. D. Ledbetter, R. Hauser, D. C. Christiani, J. M. Samet, J. McGee, J. H. Richards, and D. L. Costa. 2002. Pulmonary and systemic effects of zinc-containing emission particles in three rat strains: multiple exposure scenarios. Toxicol. Sci. 70, 73-85.
17 Alonso, A., J. Sasin, N. Bottini, I. Friedberg, A. Osterman, A. Godzik, T. Hunter, J. Dixon, and T. Mustelin. 2004. Protein tyrosine phosphatases in the human genome. Cell 117, 699-711.   DOI
18 Cheng, H., Q. Gao, M. Jiang, Y. Ma, X. Ni, L. Guo, W. Jin, G. Cao, C. Ji, K. Ying, W. Xu, S. Gu, Y. Ma, Y. Xie, and Y. Mao. 2003. Molecular cloning and characterization of a novel human protein phosphatase, LMW-DSP3. Int. J. Biochem. Cell Biol. 35, 226-234.   DOI
19 Carlos, R. M., R. Pablo, T. Lydia, K. A. Teresa, and P. Rafael. A novel phosphatase family, structurally related to dual- specificity phosphatases, that displays unique amino Acid Sequence and Substrate Specificity. J. Mol. Biol. 374, 899-909.