• Title/Summary/Keyword: tyrosine phosphorylation

Search Result 198, Processing Time 0.023 seconds

Effects of Tyrosine Phosphorylation Inhibitors on Vascular Smooth Muscle Contraction (혈광평활근 수축에 대한 타이로신 인산화 억제제의 효과)

  • Jung, Jin-Young;Yun, Yeo-Pyo;Ahn, Hee-Yul
    • YAKHAK HOEJI
    • /
    • v.41 no.5
    • /
    • pp.666-671
    • /
    • 1997
  • We studied effects of genistein and tyrphostin, inhibitors of tyrosine kinase, on contractions induced by high $K^+$ and norepinephrine in rat aorta. Genistein $(10^{-6}{\sim}10^{-4}M)$ and tyrphostin ($(10^{-5}{\sim}10^{-4}M)$) inhibited high $K^+$ and norepinephrine-induced sustained contractions, respectively in a concentration-dependent manner. High $K^+$ and norepinephrine caused an increase in $^{45}Ca^{2+}$ uptake while $10^{-4}M$ genistein and tyrphostin inhibited the $K^+$ and norepinephrine-increased $^{45}Ca^{2+}$ uptake, respectively. These results show that inhibitor of tyrosine kinase blocks the voltage-and receptor-operated $Ca^{2+}$ channels in rat aorta, respectively.

  • PDF

Discrimination between RNAP IIA and IIO in Preinitiation Complex Assembly and Tyrosine Phosphorylation of the Carboxy Terminal Domain

  • Lee, Sang-Soo
    • BMB Reports
    • /
    • v.30 no.5
    • /
    • pp.362-369
    • /
    • 1997
  • Multiple phosphorylation of the carboxy-terminal domain (CTD) of the largest subunit in RNA polymerase II (RNAP II) is thought to play an important role in the transcription cycle. The preinitiation complex in a partially purified complete transcription system suggested that RNA polymerase IIA containing unphosphorylated CTD is involved in complex assembly, whereas RNA polymerase IIO containing Ser and Thr phosphorylated CTD is not involved in preinitiation complex assembly. Recently a minimal transcription system was developed which requires chemically defined minimal components for its transcription: TBP, TFIIB, TFIIF, RNAP II and a supercoiled adenovirus-2 major late promoter (Ad-2 MLP). It would be using interesting to determine the consequence of CTD phosphorylation on preinitiation complex formation using the minimal transcription system. Contrary to the results from the partially purified complete transcription system, both RNA polymerase IIA and IIO are equally recruited in the preinitiation complex formation. The discrepancy may result from the two different assays used to determine complex formation, the use of chemically undefined complete and defined minimal transcription systems. This implicates that some factors in the complete transcription system are involved in the distinction between RNAP IIA and IIO in complex assembly. In addition multiple tyrosine phosphorylation of the CTD of RNAP II was prepared with c-Abl kinase and its recruiting ability in the preinitiation complex was examined. Compare with Ser and Thr phosphorylated RNAP IIO, Tyr phosphorylated RNAP IlOy forms a stable preinitiation complex in both the minimal and complete transcription systems. Based on these results, it seems that tyrosine phosphorylation of the CTD is important in the transcription cycle on the special subset of class-II promoter or has a different role in the transcription process.

  • PDF

Growth inhibition in head and neck cancer cell lines by gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor (두경부암 세포주에서 상피성장인자수용체 타이로신 카이네이즈 억제제인 gefitinib의 성장억제에 관한 연구)

  • Song, Seung-Il;Kim, Myung-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.5
    • /
    • pp.287-293
    • /
    • 2009
  • Cell survival is the result of a balance between programmed cell death and cellular proliferation. Cell membrane receptors and their associated signal transducing proteins control these processes. Of the numerous receptors and signaling proteins, epidermal growth factor receptor (EGFR) is one of the most important receptors involved in signaling pathways implicated in the proliferation and survival of cancer cells. EGFR is often highly expressed in human tumors including oral squamous cell carcinomas, and there is increasing evidence that high expression of EGFR is correlated with poor clinical outcome of common human cancers. Therefore, we examined the antiproliferative activity of gefitinib, epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI), in head and neck cancer cell lines. SCC-9, KB cells were cultured and growth inhibition activity of gefitinib was measured with MTT assay. To study influence of gefitinib in cell cycle, we performed cell cycle analysis with flow cytometry. Western blot was done to elucidate the expression of EGFR in cell lines and phosphorylation of EGFR and downstream kinase protein, Erk and Akt. Significant growth inhibition was observed in SCC-9 cells in contrast with KB cells. Also, flow cytometric analysis showed G1 phase arrest only in SCC-9 cells. In Western blot analysis for investigation of EGFR expression and downstream molecule phosphorylation, gefitinib suppressed phosphorylation of EGFR and downstream protein kinase Erk, Akt in SCC-9. However, in EGFR positive KB cells, weak expression of active form of Erk and Akt and no inhibitory activity of phosphorylation in Erk and Akt was observed. The antiproliferative activity of gefitinib was not correlated with EGFR expression and some possibility of phosphorylation of Erk and Akt as a predictive factor of gefitinib response was emerged. Further investigations on more reliable predictive factor indicating gefitinib response are awaited to be useful gefitinib treatment in head and neck cancer patients.

Regulation of Phosphoinositide-specific Phospholipase C-$\gamma$ Isozyme

  • Bae, Yun-Soo
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1998.06a
    • /
    • pp.17-17
    • /
    • 1998
  • Although the activation mechanism of PLC-${\gamma}$ isozyme by protein tyrosine kinase (PTK) is well established, several lines of evidence indicate that PLC-${\gamma}$ isozymes can be activated directly by several lipid-derived second messengers In the absence of tyrosine phosphorylation.(omitted)

  • PDF

Tyrosine phosphorylation as a signaling component for plant improvement

  • Park, Youn-Il;Yang, Hyo-Sik;Oh, Man-Ho
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.277-283
    • /
    • 2015
  • Plant genome analyses, including Arabidopsis thaliana showed a large gene family of plant receptor kinases with various extracellular ligand-binding domain. Now intensively studies to understand physiological and cellular functions for higher plant receptor kinases in diverse and complex biological processes including plant growth, development, ligands perception including steroid hormone and plant-microbe interactions. Brassinosteroids (BRs) as a one of well know steroid hormone are plant growth hormones that control biomass accumulation and also tolerance to many biotic and abiotic stress conditions and hence are of relevance to agriculture. BRI1 receptor kinase, which is localized in plasma membrane in the cell sense BRs and it bind to a receptor protein known as BRASSINOSTEROID INSENSITIVE 1 (BRI1). Recently, we reported that BRI1 and its co-receptor, BRI1-ASSOCIATED KINASE (BAK1) autophosphorylated on tyrosine residue (s) in vitro and in vivo and thus are dual-specificity kinases. Other plant receptor kinases are also phosphorylated on tyrosine residue (s). Post-translational modifications (PTMs) can be studied by altering the residue modified by directed mutagenesis to mimic the modified state or to prevent the modification. These approaches are useful to not only characterize the regulatory role of a given modification, but may also provide opportunities for plant improvement.

Afatinib Reduces STAT6 Signaling of Host ARPE-19 Cells Infected with Toxoplasma gondii

  • Yang, Zhaoshou;Ahn, Hye-Jin;Park, Young-Hoon;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.1
    • /
    • pp.31-38
    • /
    • 2016
  • Specific gene expressions of host cells by spontaneous STAT6 phosphorylation are major strategy for the survival of intracellular Toxoplasma gondii against parasiticidal events through STAT1 phosphorylation by infection provoked $IFN-{\gamma}$. We determined the effects of small molecules of tyrosine kinase inhibitors (TKIs) on the growth of T. gondii and on the relationship with STAT1 and STAT6 phosphorylation in ARPE-19 cells. We counted the number of T. gondii RH tachyzoites per parasitophorous vacuolar membrane (PVM) after treatment with TKIs at 12-hr intervals for 72 hr. The change of STAT6 phosphorylation was assessed via western blot and immunofluorescence assay. Among the tested TKIs, Afatinib (pan ErbB/EGFR inhibitor, $5{\mu}M$) inhibited 98.0% of the growth of T. gondii, which was comparable to pyrimethamine ($5{\mu}M$) at 96.9% and followed by Erlotinib (ErbB1/EGFR inhibitor, $20{\mu}M$) at 33.8% and Sunitinib (PDGFR or c-Kit inhibitor, $10{\mu}M$) at 21.3%. In the early stage of the infection (2, 4, and 8 hr after T. gondii challenge), Afatinib inhibited the phosphorylation of STAT6 in western blot and immunofluorescence assay. Both JAK1 and JAK3, the upper hierarchical kinases of cytokine signaling, were strongly phosphorylated at 2 hr and then disappeared entirely after 4 hr. Some TKIs, especially the EGFR inhibitors, might play an important role in the inhibition of intracellular replication of T. gondii through the inhibition of the direct phosphorylation of STAT6 by T. gondii.

Salicylate Enhances Insulin Signaling by Preventing Ser731 Phosphorylation of Insulin Receptor Substrate 1 (Insulin Receptor Substrate 1의 세린731 인산화 억제를 통한 살리실산의 인슐린저항성 개선효과 기전)

  • Lee, Yong-Hee
    • YAKHAK HOEJI
    • /
    • v.52 no.3
    • /
    • pp.182-187
    • /
    • 2008
  • Salicylate (SA) was shown to alleviate insulin resistance. Here, we showed that SA inhibited Ser731 phosphorylation of insulin receptor substrate 1 (IRS1) and S6 kinase activation, and enhanced tyrosine phosphorylation of IRS1 in response to insulin or amino acid. Experiments using a cJun N-terminal kinase (JNK)-deficient cell and an IRS1 JNK-binding mutant showed that JNK is not required for Ser731 phosphorylation. A two-week treatment of obese mice with SA resulted in decreased Ser731 phosphorylation and enhanced insulin signaling. These results suggest that SA enhances insulin signaling by inhibiting Ser731 phosphorylation of IRS1.

Regulation of $Ca_v3.2Ca^{2+}$ Channel Activity by Protein Tyrosine Phosphorylation

  • Huh, Sung-Un;Kang, Ho-Won;Park, Jin-Yong;Lee, Jung-Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.365-368
    • /
    • 2008
  • Calcium entry through $Ca_v3.2Ca^{2+}$ channels plays essential roles for various physiological events including thalamic oscillation, muscle contraction, hormone secretion, and sperm acrosomal reaction. In this study, we examined how protein tyrosine phosphatases or protein tyrosine kinases affect $Ca_v3.2Ca^{2+}$ channels reconstituted in Xenopus oocytes. We found that $Ca_v3.2$ channel activity was reduced by 25% in response to phenylarsine oxide (tyrosine phosphatase inhibitor), whereas it was augmented by 19% in response to Tyr A47 or herbimycin A (tyrosine kinase inhibitors). However, other biophysical properties of $Ca_v3.2$ currents were not significantly changed by the drugs. These results imply that $Ca_v3.2$ channel activity is capable of being increased by activation of tyrosine phosphatases, but is decreased by activation of tyrosine kinases.

Phosphorylation on the PPP2R5D B regulatory subunit modulates the biochemical properties of protein phosphatase 2A

  • Yu, Un-Young;Ahn, Jung-Hyuck
    • BMB Reports
    • /
    • v.43 no.4
    • /
    • pp.263-267
    • /
    • 2010
  • To characterize the biochemical properties of the PP2A regulatory B subunit, PPP2R5D, we analyzed its phosphorylation sites, stoichiometry and effect on holoenzyme activity. PPP2R5D was phosphorylated on Ser-53, Ser-68, Ser-81, and Ser-566 by protein kinase A, and mutations at all four of these sites abolished any significant phosphorylation in vitro. In HEK293 cells, however, the Ser-566 was the major phosphorylation site after PKA activation by forskolin, with marginal phosphorylation on Ser-81. Inhibitory tyrosine phosphorylation on Tyr-307 of the PP2A catalytic C subunit was decreased after forskolin treatment. Kinetic analysis showed that overall PP2A activity was increased with phosphorylation by PPP2R5D phosphorylation. The apparent Km was reduced from $11.25\;{\mu}M$ to $1.175\;{\mu}M$ with PPP2R5D phosphorylation, resulting in an increase in catalytic activity. These data suggest that PKA-mediated activation of PP2A is enabled by PPP2R5D phosphorylation, which modulates the affinity of the PP2A holoenzyme to its physiological substrates.

Structure-Based Virtual Screening of Protein Tyrosine Phosphatase Inhibitors: Significance, Challenges, and Solutions

  • Reddy, Rallabandi Harikrishna;Kim, Hackyoung;Cha, Seungbin;Lee, Bongsoo;Kim, Young Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.878-895
    • /
    • 2017
  • Phosphorylation, a critical mechanism in biological systems, is estimated to be indispensable for about 30% of key biological activities, such as cell cycle progression, migration, and division. It is synergistically balanced by kinases and phosphatases, and any deviation from this balance leads to disease conditions. Pathway or biological activity-based abnormalities in phosphorylation and the type of involved phosphatase influence the outcome, and cause diverse diseases ranging from diabetes, rheumatoid arthritis, and numerous cancers. Protein tyrosine phosphatases (PTPs) are of prime importance in the process of dephosphorylation and catalyze several biological functions. Abnormal PTP activities are reported to result in several human diseases. Consequently, there is an increased demand for potential PTP inhibitory small molecules. Several strategies in structure-based drug designing techniques for potential inhibitory small molecules of PTPs have been explored along with traditional drug designing methods in order to overcome the hurdles in PTP inhibitor discovery. In this review, we discuss druggable PTPs and structure-based virtual screening efforts for successful PTP inhibitor design.