• Title/Summary/Keyword: tyrosine phosphatase

Search Result 159, Processing Time 0.029 seconds

Tyrosine kinase inhibitors reverse lawsone methyl ether stimulation of renal dipeptidase release but not of alkaline phosphatase release.

  • Park, Eun-Mi;Yoon, Hyun-Joong;Park, Haeng-Soon
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.322.1-322.1
    • /
    • 2002
  • Lawsone methyl ether (LME. 2-methoxy-1, 4-naphthoquinone) is a natural compound found in balsaminaceae. In this study the effect of LME on the release of renal dipeptidase (RDPase) and alkaline phosphatase (APase) known as glycosylphosphatidylinositol (GPI) anchored proteins was examined from the renal proximal tubules. Compared with control, LME (0.5mM) increased RDPase release (218%) and APase release (135%). The increase of RDPase release by LME showed concentration-dependent effect but the release pattern of APase did not. (omitted)

  • PDF

Characterization of Protein Kinases Activated during Treatment of Cells with Okadaic Acid

  • Bogoyevitch, Marie A.;Thien, Marilyn;Ng, Dominic C.H.
    • BMB Reports
    • /
    • v.34 no.6
    • /
    • pp.517-525
    • /
    • 2001
  • Six renaturable protein kinases that utilize the myelin basic protein (MBP) as a substrate were activated during prolonged exposure of cardiac myocytes to okadaic acid (OA). We characterized the substrate preference and activation of these kinases, with particular emphasis on 3 novel kinases-MBPK-55, MBPK-62 and MBPK-87. The transcription factors c-Jun, Elk, ATF2, and c-Fos that are used to assess mitogen-activated protein kinase activation were all poor substrates for these three kinases. MAPKAPK2 was also not phosphorylated. In contrast, Histone IIIS was phosphorylated by MBPK-55 and MBPK-62. These protein kinases were activated in cultured cardiac fibroblasts, H9c2 cardiac myoblasts, and Cos cells. High concentrations (0.5 to $1\;{\mu}M$) of OA were essential for the activation of the protein kinases in all of the cell types examined, whereas calyculin A [an inhibitor of protein phosphatase 1 (PP1) and PP2A], cyclosporin A (a PP2B inhibitor), and an inactive OA analog all failed to activate these kinases. The high dose of okadaic acid that is required for kinase activation was also required for phosphatase inhibition, as assessed by immunoblotting whole cell lysates with anti-phosphothreonine antibodies. A variety of chemical inhibitors, including PD98059 (MEK-specific), genistein (tyrosine kinase-specific) and Bisindolylmaleimide I (protein kinase C-specific), failed to inhibit the OA activation of these kinases. Thus, MBPK-55 and MBPK-62 are also Histone IIIS kinases that are widely expressed and specifically activated upon exposure to high OA concentrations.

  • PDF

Monitoring trafficking and expression of hemagglutinin-tagged transient receptor potential melastatin 4 channel in mammalian cells

  • Eun Mi Hwang;Bo Hyun Lee;Eun Hye Byun;Soomin Lee;Dawon Kang;Dong Kun Lee;Min Seok Song;Seong-Geun Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.4
    • /
    • pp.417-426
    • /
    • 2023
  • The TRPM4 gene encodes a Ca2+-activated monovalent cation channel called transient receptor potential melastatin 4 (TRPM4) that is expressed in various tissues. Dysregulation or abnormal expression of TRPM4 has been linked to a range of diseases. We introduced the hemagglutinin (HA) tag into the extracellular S6 loop of TRPM4, resulting in an HA-tagged version called TRPM4-HA. This TRPM4-HA was developed to investigate the purification, localization, and function of TRPM4 in different physiological and pathological conditions. TRPM4-HA was successfully expressed in the intact cell membrane and exhibited similar electrophysiological properties, such as the current-voltage relationship, rapid desensitization, and current size, compared to the wild-type TRPM4. The presence of the TRPM4 inhibitor 9-phenanthrol did not affect these properties. Furthermore, a wound-healing assay showed that TRPM4-HA induced cell proliferation and migration, similar to the native TRPM4. Co-expression of protein tyrosine phosphatase, non-receptor type 6 (PTPN6 or SHP1) with TRPM4-HA led to the translocation of TRPM4-HA to the cytosol. To investigate the interaction between PTPN6 and tyrosine residues of TRPM4 in enhancing channel activity, we generated four mutants in which tyrosine (Y) residues were substituted with phenylalanine (F) at the N-terminus of TRPM4. The YF mutants displayed properties and functions similar to TRPM4-HA, except for the Y256F mutant, which showed resistance to 9-phenanthrol, suggesting that Y256 may be involved in the binding site for 9-phenanthrol. Overall, the creation of HA-tagged TRPM4 provides researchers with a valuable tool to study the role of TRPM4 in different conditions and its potential interactions with other proteins, such as PTPN6.

Ginsenoside compound K reduces ischemia/reperfusion-induced neuronal apoptosis by inhibiting PTP1B-mediated IRS1 tyrosine dephosphorylation

  • Jing, Fu;Liang, Yu;Qian, Yu;Nengwei, Yu;Fei, Xu;Suping, Li
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.274-282
    • /
    • 2023
  • Background: Ginsenoside compound K (CK) stimulated activation of the PI3K-Akt signaling is one of the major mechanisms in promoting cell survival after stroke. However, the underlying mediators remain poorly understood. This study aimed to explore the docking protein of ginsenoside CK mediating the neuroprotective effects. Materials and methods: Molecular docking, surface plasmon resonance, and cellular thermal shift assay were performed to explore ginsenoside CK interacting proteins. Neuroscreen-1 cells and middle cerebral artery occlusion (MCAO) model in rats were utilized as in-vitro and in-vivo models. Results: Ginsenoside CK interacted with recombinant human PTP1B protein and impaired its tyrosine phosphatase activity. Pathway and process enrichment analysis confirmed the involvement of PTP1B and its interacting proteins in PI3K-Akt signaling pathway. PTP1B overexpression reduced the tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) after oxygen-glucose deprivation/reoxygenation (OGD/R) in neuroscreen-1 cells. These regulations were confirmed in the ipsilateral ischemic hemisphere of the rat brains after MCAO/R. Ginsenoside CK treatment reversed these alterations and attenuated neuronal apoptosis. Conclusion: Ginsenoside CK binds to PTP1B with a high affinity and inhibits PTP1B-mediated IRS1 tyrosine dephosphorylation. This novel mechanism helps explain the role of ginsenoside CK in activating the neuronal protective PI3K-Akt signaling pathway after ischemia-reperfusion injury.

Neuroprotective Effects of Protein Tyrosine Phosphatase 1B Inhibition against ER Stress-Induced Toxicity

  • Jeon, Yu-Mi;Lee, Shinrye;Kim, Seyeon;Kwon, Younghwi;Kim, Kiyoung;Chung, Chang Geon;Lee, Seongsoo;Lee, Sung Bae;Kim, Hyung-Jun
    • Molecules and Cells
    • /
    • v.40 no.4
    • /
    • pp.280-290
    • /
    • 2017
  • Several lines of evidence suggest that endoplasmic reticulum (ER) stress plays a critical role in the pathogenesis of many neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Protein tyrosine phosphatase 1B (PTP1B) is known to regulate the ER stress signaling pathway, but its role in neuronal systems in terms of ER stress remains largely unknown. Here, we showed that rotenone-induced toxicity in human neuroblastoma cell lines and mouse primary cortical neurons was ameliorated by PTP1B inhibition. Moreover, the increase in the level of ER stress markers ($eIF2{\alpha}$ phosphorylation and PERK phosphorylation) induced by rotenone treatment was obviously suppressed by concomitant PTP1B inhibition. However, the rotenone-induced production of reactive oxygen species (ROS) was not affected by PTP1B inhibition, suggesting that the neuroprotective effect of the PTP1B inhibitor is not associated with ROS production. Moreover, we found that MG132-induced toxicity involving proteasome inhibition was also ameliorated by PTP1B inhibition in a human neuroblastoma cell line and mouse primary cortical neurons. Consistently, downregulation of the PTP1B homologue gene in Drosophila mitigated rotenone- and MG132-induced toxicity. Taken together, these findings indicate that PTP1B inhibition may represent a novel therapeutic approach for ER stress-mediated neurodegenerative diseases.

Aspirin inhibits lipopolysaccharide-induced COX-2 expression and PGE2 production in porcine alveolar macrophages by modulating protein kinase C and protein tyrosine phosphatase activity

  • Duan, Yuzhong;Chen, Fanglin;Zhang, Anmei;Zhu, Bo;Sun, Jianguo;Xie, Qichao;Chen, Zhengtang
    • BMB Reports
    • /
    • v.47 no.1
    • /
    • pp.45-50
    • /
    • 2014
  • Aspirin has been demonstrated to be effective in inhibiting COX-2 and $PGE_2$ in Alveolar macrophages (AMs). However, the mechanisms have not been fully understood. In the present study, we found that pretreatment with aspirin inhibited LPS-induced COX-2 and$PGE_2$ upregulation, $I{\kappa}B{\alpha}$ degradation, NF-${\kappa}B$ activation and the increase of PKC activity, but elevated LPS-induced the decrease of PTP activity. The PKC inhibitor calphostin C dramatically reduced the COX-2 mRNA and $PGE_2$ levels, but the PTP inhibitor peroxovanadium (POV) significantly increased the COX-2 mRNA and$PGE_2$ levels. Furthermore, the PTP inhibitor mitigated the inhibitory effect of aspirin on COX-2 and$PGE_2$ upregulation and NF-${\kappa}B$ activation, whereas the PKC inhibitor enhanced the inhibitory effects of aspirin on the production of COX-2 and$PGE_2$. Our data indicate a novel mechanism by which aspirin acts as a potent anti-inflammatory agent in alveolus macrophages and ALI.

Inhibitory Activity of Aralia elata Leaves on Protein Tyrosine Phosphatase 1B and α-Glucosidase (참두릅 잎의 Protein Tyrosine Phosphatase 1B와 α-Glucosidase 저해 활성)

  • Cho, Yoon Sook;Seong, Su Hui;Bhakta, Himanshu Kumar;Jung, Hee Jin;Moon, Kyung Ho;Choi, Jae Sue
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.1
    • /
    • pp.29-37
    • /
    • 2016
  • Anti-diabetic potential of the leaves of A. elata through the inhibitory activity on PTP1B and ${\alpha}$-glucosidase has not been reported. In this study, the EtOAc fraction of methanolic extract from the leaves of A. elata showed potent inhibitory activity against the PTP1B and ${\alpha}$-glucosidase with $IC_{50}$ value of $96.29{\pm}0.3$ and $264.71{\pm}14.87{\mu}g/mL$, respectively. Three known triterpenoids, oleanolic acid, oleanolic acid-28-O-${\beta}$-D-glucopyranoside and oleanolic acid-3-O-${\beta}$-D-glucopyranoside were isolated from the most active EtOAc fraction. We determined the chemical structure of these triterpenoids through comparisons of published nuclear magnetic resonance (NMR) spectroscopic data. Furthermore, we screened these triterpenoids for their ability to inhibit PTP1B and ${\alpha}$-glucosidase over a range of concentrations ($12.5-50{\mu}M$). All three terpenoids significantly inhibited PTP1B in a concentration dependent manner and oleanolic acid effectively inhibited ${\alpha}$-glucosidase. In addition, these compounds revealed potent inhibitory activity with negative binding energies toward PTP1B, showing high affinity and tight binding capacity in the molecular docking studies. Therefore, the results of the present study clearly demonstrate that A. elata leaves and its triterpenoid constituents might be beneficial in the prevention or treatment of diabetic disease.

Hypoglycemic Effect of Paeonia lactiflora in High Fat Diet-Induced Type 2 Diabetic Mouse Model (고지방식이 유발 제2형 당뇨모델 마우스에서 작약의 혈당강하 효능)

  • Yoon, In-Soo;Jung, Yujung;Kim, Hyun Jung;Lim, Hyun Jin;Cho, Seung-Sik;Shim, Jung-Hyun;Kang, Bok Yun;Cheon, Seung Hoon;Kim, Su-Nam;Yoon, Goo
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.3
    • /
    • pp.194-199
    • /
    • 2014
  • The roots of Paeonia lactiflora (PL) has been traditionally used as analgesic, spasmolytic and tonic in Korea, China, and Japan. As part of a search for herbal medicine to treat diabetes and obesity, we confirmed hypoglycemic effect of PL through high fat diet-induced obese and diabetic mice experiments in vivo. Treatment of ethanolic extract from PL led to a significant decrease in glucose level, which is comparable to that of an antidiabetic drug metformin. In addition, PL selectively stimulates the transcriptional activities of both peroxisome proliferator-activated receptor $(PPAR){\alpha}$ and ${\gamma}$, and inhibits enzymatic activity of protein tyrosine phosphatase 1B (PTP1B), which are predicted to be therapeutic target in treatment of type2 diabetes and obesity. Especially, the n-hexane fraction (Hx) from PL ethanol extract showed more potent activities on $PPAR{\alpha}$ and than others and exihibited moderate inhibitory activity against PTP1B.

Development and Validation of an HPLC-PDA Method for Quantitation of Ten Marker Compounds from Eclipta prostrata (L.) and Evaluation of Their Protein Tyrosine Phosphatase 1B, α-Glucosidase, and Acetylcholinesterase Inhibitory Activities

  • Nguyen, Duc Hung;Le, Duc Dat;Ma, Eun Sook;Min, Byung Sun;Woo, Mi Hee
    • Natural Product Sciences
    • /
    • v.26 no.4
    • /
    • pp.326-333
    • /
    • 2020
  • The aerial parts of Eclipta prostrata is used as a traditional medicine and vegetable. In traditional folk medicine, it is used for treatment of hemorrhages, hepatic, disease, renal injuries, hair loss, tooth mobility, and viper bites. In this study, ten compounds (1 - 10) were isolated from the aerial parts of E. prostrata. A reliable high performance liquid chromatography equipped with photometric diode array detector (HPLC-PDA) method was developed to simultaneously quantitate 10 marker compounds [chlorogenic acid (1), paratensein 7-O-��-ᴅ-glucoside (2), quercetin 7-O-��-ᴅ-glucoside (3), luteolin 7-O-��-ᴅ-glucoside (4), apigenin 7-O-��-ᴅ-glucoside (5), apigenin 4'-O-��-ᴅ-glucoside (6), apigenin (7), luteolin (8), wedelolactone (9), and paratensein (10)]. In addition, compounds 5 and 6 showed considerable inhibitory effects against protein-tyrosine phosphatase 1B (PTP1B) enzyme. Moreover, compounds 6 - 8, and 10 exhibited potent α-glucosidase inhibitory effects with IC50 values of 24.5 ± 1.9, 33.0 ± 0.5, 45.5 ± 0.1, and 23.8 ± 1.0 µM, respectively. All compounds (1 - 10) showed considerable acetylcholinesterase (AChE) inhibitory effects with IC50 ranging from 30.1 to 75.2 µM.

Studies on Intracellular Regulatory Proteins of Pancreatic Exocrine Secretion (이자효소 분비에 관여하는 세포 내 조절 단백에 대한 연구)

  • Chung, Ku-Yong;Choi, Jae-Won;Choi, Hong-Soon;Kim, Kyung-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.243-257
    • /
    • 1996
  • CCK and cholinergic agonist stimulate enzyme release from the pancreatic acini via G-protein-mediated activation of phospholipase C, In contrast secretin and related peptides increase the level of cAMP and activate cAMP-dependent protein kinase. Camostat, a synthetic protease inhibitor, causes pancreatic hypertrophy and hyperplasia by increasing the CCK release. In this study, the secretagogue-induced changes of intracellular proteins were examined in the dispersed pancreatic acini of rats with or without camostat treatment. Camostat(FOY-305, 200 mg/kg, p.o.) was given for 4 days twice daily and the dispersed acini were prepared at 12 bouts after last treatment. The profiles of Intracellular phosphoproteins were analyzed by two-dimensional gel electrophoresis after incubating the acini with $^{32}P$. The amylase release from the dispersed acini was measured. The pancreatic weight was increased to 126% of control, while amylase activity per mg acinar protein decreased to 41% of control, The maximum response of amylase release from dispersed acini to CCK-8 or carbachol was markedly decreased(65% or 46% of control, respectively). The group of intracellular proteins(24 kD, pI $4.5{\sim}8.5$) was increased in quantity by camostat. CCK-8 or secretin increased phosphorylation of a protein(34 kD, pI 4.7) in camostat-treated as well as control rats. CCK-8 increased tyrosine phosphoryiation in the acini of control rats. However, in camostat-treated rats, the basal level of tyrosine phosphorylation was increased and it was rather decreased by CCK-8. Secretin had no effect on the level of tyrosine phosphorylation in acini. These results indicate that both phospholipase C and adenylate cyclase induce phosphorylation of an intracellular acinar protein(34 kD, pI 4.7) and camostat treatment increases the basal level of tyrosine phosphorylation in acinar cells. And these results suggest that not only serine/threonine protein kinase but also protein tyrosine kinase/phosphatase are involved in the process of CCK receptor mediated stimulation-secrelion coupling.

  • PDF