• Title/Summary/Keyword: tyrosinase related protein-2 (TRP-2)

Search Result 134, Processing Time 0.034 seconds

Effects of phenolics from Oplismenus undulatifolius in α-MSH-stimulated B16F10 melanoma cells

  • Park, Hye-Jin;Lee, Eun-Ho;Jung, Hee-Young;Kang, In-Kyu;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.1
    • /
    • pp.89-93
    • /
    • 2020
  • In this study, the efficacy of melanoma cell B16F10 was investigated using the Korean native plant Oplismenus undulatifolius (OU). First, the cell viability of the extract was more than 90% when treated with 15 ㎍/mL of phenolics from OU. The results showed that melanin biosynthesis and cellular tyrosinase synthesis were inhibited by treatment with α-melanocyte-stimulating hormone-stimulated mouse melanoma cell B16F10 at a concentration of 15 ㎍/mL of phenolics for cell-line efficacy. The expression of tyrosinase, tyrosinase-related protein (TRP)-1, TRP-2, and microphthalmia transcription factor (MITF) protein was confirmed by western blot to investigate the effect of phenolics from OU on melanin biosynthesis. When treated with phenolics from OU 15 ㎍/mL, tyrosinase, TRP-1, TRP-2, and MITF decreased the protein expression level. In particular, tyrosinase, TRP-1, and MITF inhibited the production amount to a level similar to that of the non-treated normal group, indicating that the effect was excellent. Therefore, phenolics from OU acts as an inhibitor of tyrosinase, TRP-1, TRP-2, and its transcription factor MITF, and participates in melanin biosynthesis mechanism. These results suggested the potential for development as a material.

Promotive Effect of Polygonum multiflorum radix Ethanol Extract on Melanogenesis (적하수오 에탄올 추출물의 melanin 합성 촉진효과)

  • Kim, Hyejeong;Kim, Moon-Moo
    • Journal of Life Science
    • /
    • v.27 no.4
    • /
    • pp.423-429
    • /
    • 2017
  • Hair color is determined by kind and amount of melanin. Melanocyte mainly synthesizes melanin from L-tyrosine by stimulation of ultra violet. Reactive oxygen species (ROS) play an important role in greying hair. Polygonum multiflorum radix has been reported to inhibit the aging process that black color of hair is turned into grey color. The aim of this study is to investigate the effect of Polygoni multiflorium radix ethanol extract (PMEE) on melanin synthesis related to black hair growth. In anti-oxidant experiment, PMEE decreased DPPH radical and increased reducing power, indicating that PMEE could eliminate ROS involved in greying hair. PMEE decreased cell viability in a dose-dependent manner. Furthermore, the effect of PMEE on the production of melanin was determined by DOPA assay and tyrosinase activity. PMEE increased tyrosinase activity and promoted melanin synthesis. In addition, the expression levels of tyrosinase, tyrosinase related protein-1 (TRP-1), tyrosinase related protein-2 (TRP-2) and microphthalmia-associated transcription factor (MITF), as well as anti-oxidant enzymes such as superoxide dismutase (SOD-3) and catalase were examined using western blot analysis. The expression levels of SOD-3 and catalase were decreased due to the enhanced antioxidant activity of PMEE. In particular, PMEE increased the expression levels of tyrosinase and TRP-2. These results suggest that PMEE could promote melanin synthesis that involved in tuning gray hair into black hair.

Inhibitory effect of Gastrodia elata Blume extract on alpha-melanocyte stimulating hormone-induced melanogenesis in murine B16F10 melanoma

  • Shim, Eugene;Song, Eunju;Choi, Kyoung Sook;Choi, Hyuk-Joon;Hwang, Jinah
    • Nutrition Research and Practice
    • /
    • v.11 no.3
    • /
    • pp.173-179
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Gastrodia elata Blume (GEB), a traditional herbal medicine, has been used to treat a wide range of neurological disorders (e.g., paralysis and stroke) and skin problems (e.g., atopic dermatitis and eczema) in oriental medicine. This study was designed to investigate whether GEB extract inhibits melanogenesis activity in murine B16F10 melanoma. MATERIALS/METHOD: Murine B16F10 cells were treated with 0-5 mg/mL of GEB extract or $400{\mu}g/mL$ arbutin (a positive control) for 72 h after treatment with/without 200 nM alpha-melanocyte stimulating hormone (${\alpha}$-MSH) for 24 h. Melanin concentration, tyrosinase activity, mRNA levels, and protein expression of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein (Trp)1, and Trp2 were analyzed in ${\alpha}$-MSH-untreated and ${\alpha}$-MSH-treated B16F10 cells. RESULTS: Treatment with 200 nM ${\alpha}$-MSH induced almost 2-fold melanin synthesis and tyrosinase activity along with increased mRNA levels and protein expression of MITF, tyrosinase, Trp1 and Trp2. Irrespective of ${\alpha}$-MSH stimulation, GEB extract at doses of 0.5-5 mg/mL inhibited all these markers for skin whitening in a dose-dependent manner. While lower doses (0.5-1 mg/mL) of GEB extract generally had a tendency to decrease melanogenesis, tyrosinase activity, and mRNA levels and protein expression of MITF, tyrosinase, Trp1, and Trp2, higher doses (2-5 mg/mL) significantly inhibited all these markers in ${\alpha}$-MSH-treated B16F10 cells in a dose-dependent manner. These inhibitory effects of the GEB extract at higher concentrations were similar to those of $400{\mu}g/mL$ arbutin, a well-known depigmenting agent. CONCLUSIONS: These results suggest that GEB displays dose-dependent inhibition of melanin synthesis through the suppression of tyrosinase activity as well as molecular levels of MITF, tyrosinase, Trp1, and Trp2 in murine B16F10 melanoma. Therefore, GEB may be an effective and natural skin-whitening agent for application in the cosmetic industry.

Artemisia capillaris Thunb. inhibits melanin synthesis activity via ERK-dependent MITF pathway in B16/F10 melanoma cells

  • Saba, Evelyn;Oh, Mi Ju;Lee, Yuan Yee;Kwak, Dongmi;Kim, Suk;Rhee, Man Hee
    • Korean Journal of Veterinary Research
    • /
    • v.58 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • Genus Artemisia occurs as a hardy plant and has a wide range of culinary and medicinal features. In this study, we aimed to describe the melanin inhibitory activity of one Artemisia species, i.e., Artemisia capillaris Thunb. Ethanol extracts of fermented Artemisia capillaris (Art.EtOH.FT) and non-fermented Artemisia capillaris (Art.EtOH.CT) were tested for their ability to inhibit tyrosinase activity and melanin pigmentation. Both extracts showed dose-dependent inhibition against ${\alpha}$-melanocyte stimulating hormone-stimulated melanin formation and tyrosinase activity, without cytotoxicity. At $100{\mu}g/mL$, both extracts showed greater inhibition than kojic acid, the positive control. Protein expressions of microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein 1 (TRP-1), and tyrosinase-related protein 2 (TRP-2) at the transcriptional level were determined by using real-time and semi-quantitative polymerase chain reaction. To complete the mechanistic study, presences of upstream elements of MITF, the phosphorylated-extracellular signal-regulated kinase (p-ERK), and phosphorylated-mitogen-activated protein kinase kinase (p-MEK) were confirmed by using western blot analysis. Expressions of p-TYR, p-TRP-1 and p-TRP-2, downstream factors for p-ERK and p-MITF, were translationally inhibited by both extracts. Art.EtOH.FT induced more potent effects than Art.EtOH.CT, especially signal transduction effects. In summary, Artemisia capillaris extracts appear to act as potent hypopigmentation agents.

Anti-Melanogenic Activities of Ranunculus chinensis Bunge via ERK1/2-Mediated MITF Downregulation

  • Min-Jin Kim;Yong Tae Jeong;Buyng Su Hwang;Yong Hwang;Dae Won Jeong;Yeong Taek Oh
    • Korean Journal of Plant Resources
    • /
    • v.35 no.6
    • /
    • pp.704-712
    • /
    • 2022
  • Research on whitening materials using natural alternatives is actively being conducted. The aim of this study was to investigate the in vitro inhibitory effects of Ranunculus chinensis Bunge (RCB) on melanogenesis and associated enzymes, such as tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 in B16F10 murine melanoma cells. We found that RCB extract significantly attenuated melanin synthesis and reduced the activity of intracellular tyrosinase, a rate-limiting melanogenic enzyme. Western blot analysis showed that RCB extract decreased the protein expression of tyrosinase and TRP-1. In addition, it significantly decreased the expression of microphthalmia-associated transcription factor (MITF), a key regulator of melanogenesis. Extracellular signal-regulated kinase (ERK) activation has been reported to be involved in the inhibition of melanogenesis. Thus, we investigated whether the hypopigmentary effects of RCB extract were related to the activation of ERK. RCB extract induced ERK phosphorylation in a dose-dependent manner. Furthermore, it markedly inhibited body pigmentation in a zebrafish model. Our results suggest that RCB extract inhibits melanogenesis by activating ERK pathway-mediated suppression of MITF and its downstream target genes, including tyrosinase. Therefore, RCB extract can be used as a whitening agent in the development of functional cosmetics.

Antimelanogenic effect and whitening of crude polysaccharide fraction extracted from Perilla frutescens Britton var. acuta Kudo (자소엽(Perilla frutescens Britton var. acuta Kudo) 조다당의 멜라닌 생성 저해 및 미백효과)

  • Cho, Eun-Ji;Byun, Eui-Hong
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.58-63
    • /
    • 2019
  • In this study, the inhibitory effects of crude polysaccharide fractions separated from Perilla frutescens Britton var. acuta Kudo (PCP) on melanin synthesis and tyrosinase activity were observed. B16F10 melanoma cells were treated with 125 and $250{\mu}g/mL$ of PCP for 24 hours. Using these optimal concentrations, inhibition of melanin synthesis inhibition was measured, and PCP treatment significantly reduced melanin synthesis induced by 3-isobutyl-1-methylxanthine (IBMX). In addition, western blotting analysis on B16F10 melanoma cells showed that PCP inhibited tyrosinase, microphthalmia-associated transcriptipn factor, tyrosinase related protein-1, and tyrosinase related protein-2 expression. Therefore, these results indicate that PCP may have potential inhibitory activity against melanin synthesis and may be a natural ingredient useful for the development of whitening materials in cosmetics and functional foods.

Potent Whitening Activity of Aruncus dioicus Extract in B16F10 Melanoma Cell by Suppression of Melanin Biosynthesis (흑색종세포의 멜라닌 생성억제로 인한 삼나물 추출물(Aruncus dioicus)의 미백효과)

  • Kim, Dong-Hee;Moon, Yong-Sun;Park, Tae-Soon;Hwang, Ju-Young;Son, Jun-Ho
    • Horticultural Science & Technology
    • /
    • v.31 no.6
    • /
    • pp.813-820
    • /
    • 2013
  • Monoterpenoids were recently found as main biologically active compounds which is responsible for various physiological effect in goat's beard (Aruncus dioicus). Ethyl acetate extract of A. dioicus (ADE) was treated to B16F10 melanoma cells for the examination of whitening activity. MTT assay was performed to evaluate cell toxicity and the result showed that slight cell toxicity (> 10%) by over $500{\mu}g{\cdot}mL^{-1}$. Thus, 0, 5, 10, or $50{\mu}g{\cdot}mL^{-1}$ ADE was used for further experiments. We found that tyrosinase activity was decreased according to ADE concentration, and the total melanin content was also dramatically reduced. Especially with $50{\mu}g{\cdot}mL^{-1}$ ADE treatment tyrosinase activity was reduced to 35.6%, and 58.8% of melanin content was lowered. In addition, whitening related proteins including tyrosinase, tyrosinase related protein 1 (TRP1), TRP2, microphthalmia associated transcription factor (MITF) and cAMP and protein kinase A (PKA) were reduced by ADE treatment. It caused decreased phosphorylation of cAMP response binding protein (CREB) but increased phosphorylation of extracellular signal related kinase (ERK). Therefore, in this paper we would like to suggest the potent usage of A. dioicus natively grown in Ulleungdo, Korea as materials of functional cosmetics by confirming whitening activity related with melanin content.

Studies on Anti-Inflammatory and Anti-Melanogenic Effect of Grape Fruit Stem Extract (포도송이가지 추출물의 항염증 및 미백효능에 대한 연구)

  • Choi, Anna;Lee, Hyun-Seo;Kim, Jang Ho;Cho, Byoung Ok;Shin, Jae Young;Jeong, Seung-Il;Jang, Seon Il
    • The Korea Journal of Herbology
    • /
    • v.32 no.3
    • /
    • pp.71-78
    • /
    • 2017
  • Objectives : The various grape extracts derived from grape pulp, seed and skin, containing various types of polyphenols and flavonoids, have been known to have anti-inflammatory, antioxidant and improve cardiovascular condition as well as sun's damaging effects. However, there have been rare reports of various beneficial effects of grape fruit stem extract (GFSE), one of the waste products of grapes. We investigated anti-inflammatory and melanogenesis inhibitory effects of GFSE. Methods : One-hundred gram of grape fruit stem was extracted with 80% ethanol at room temperature for 3 days. After filtration, the ethanol was removed using vacuum evaporator, then lyophilized to obtain the dry extract which was stored at $-20^{\circ}C$ until used. NO levels were measured by using Greiss reagent. Prostaglandin $E_2$ ($PGE_2$) production was measured by ELISA assay. The expression levels of iNOS, COX-2, TRP-1 and TRP-2 were evaluated by western blot analysis. Results : GFSE reduced the level of nitric oxide and prostaglandin $E_2$ ($PGE_2$) production in a dose-dependent manner, compared to control. Expressions of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) protein were also effectively inhibited by the GFSE. In a tyrosinase inhibitory activity, GFSE significantly reduced the tyrosinase activity and melanin content in a dose dependent manner, compared to control. GFSE also decreased the expression of tyrosinase related protein-1 (TRP-1) and tyrosinase related protein-2 (TRP-2), known as a melanocyte-specific gene product involved in melanin synthesis. Conclusions : Therefore, these results indicated that GFSE had powerful anti-inflammatory and anti-melanogenic effects.

Diarylpropionitrile inhibits melanogenesis via protein kinase A/cAMP-response element-binding protein/microphthalmiaassociated transcription factor signaling pathway in α-MSH-stimulated B16F10 melanoma cells

  • Lee, Hyun Jeong;An, Sungkwan;Bae, Seunghee;Lee, Jae Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.113-123
    • /
    • 2022
  • Diarylpropionitrile (DPN), a selective agonist for estrogen receptor β (ERβ), has been reported to regulate various hormonal responses through activation of ERβ in tissues including the mammary gland and brain. However, the effect of DPN on melanogenesis independent of ERβ has not been studied. The aim of this study is to examine the possibility of anti-melanogenic effect of DPN and its underlying mechanism. Melanin contents and cellular tyrosinase activity assay indicated that DPN inhibited melanin biosynthesis in alpha-melanocyte stimulating hormone-stimulated B16F10 melanoma cell line. However, DPN had no direct influence on in vitro tyrosinase catalytic activity. On the other hand, 17β-estradiol had no effect on inhibition of melanogenesis, suggesting that the DPN-mediated suppression of melanin production was not related with estrogen signaling pathway. Immunoblotting analysis showed that DPN down-regulated the expression of microphthalmia-associated transcription factor (MITF), a central transcription factor of melanogenesis and its down-stream genes including tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. Also, DPN attenuated the phosphorylation of protein kinase A (PKA) and cAMP-response element-binding protein (CREB). Additionally, DPN suppressed the melanin synthesis in UVB-irradiated HaCaT conditioned media culture system suggesting that DPN has potential as an anti-melanogenic activity in physiological conditions. Collectively, our data show that DPN inhibits melanogenesis via downregulation of PKA/CREB/MITF signaling pathway.

Whitening Activity of Sambucus Sieboldiana Var. Pendula (Nakai) Extract (말오줌나무 추출물의 미백활성 검증)

  • Yoo, Dan-Hee;Kim, Jin-Tae;Oh, Min-Jeong;Yeom, Hyeon-Ji;Lee, Jin-Young
    • Journal of Life Science
    • /
    • v.29 no.3
    • /
    • pp.279-286
    • /
    • 2019
  • This study evaluated the anti-oxidant and whitening effects of a 70% ethanol extract of the Sambucus sieboldiana var. pendula (Nakai) (SS). At $1,000{\mu}g/ml$ concentration, the electron donating ability of this SS extract was found to be 86.21% and the ABTS+ radical scavenging ability was 97.9%. In terms of whitening activity, the tyrosinase inhibitory effect of the extract was 37%, also at $1,000{\mu}g/ml$ concentration. To explore the extractefftoxicity to B16F10 melanoma cells, a 3-[4,5-dimethyl-thiazol-2-yl]-2,5-diphenyl-tetrazoliumbromide assay was performed. Results showed 90% or more cells remained viable at $100{\mu}g/ml$ concentration. A Western blot of the SS extract was used to measure microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1 (TRP-1), tyrosinase relate protein-2 (TRP-2), and the tyrosinase protein expression inhibitory effect at 25, 50, $100{\mu}g/ml$ concentrations; ${\beta}-actin$ was used as a positive control. Consequently, the MITF, TRP-1, TRP-2, and the tyrosinase protein expression inhibitory effect were seen to decrease by 34.5%, 45.6%, 58.4%, and 79.6%, respectively, at $100{\mu}g/ml$ concentration. These were also then measured by reverse transcription-polymerase chain reaction at 25, 50, $100{\mu}g/ml$ concentrations with GAPDH as a positive control. As a result, the SS extract was seen to decrease MITF, TRP-1, TRP-2, and the tyrosinase protein expression inhibitory effect by 85.4%, 67.5%, 85.2%, 67.1%, respectively at the $100{\mu}g/ml$ concentration. We therefore confirmed the possibility of Sambucus sieboldiana var. pendula (Nakai) extract as a whitening material.