• 제목/요약/키워드: typical vehicle

검색결과 297건 처리시간 0.025초

Transition Insert를 이용한 알루미늄과 강판의 저항점용접에서 동저항측정을 통한 모니터링 (In Process Monitoring of Dynamic Resistance during Resistance Spot Welding of Aluminum to Steel using Transition Insert)

    • Journal of Welding and Joining
    • /
    • 제18권2호
    • /
    • pp.112-118
    • /
    • 2000
  • Automobile manufacturers have employed resistance spot welding(RSW) to join steel sheets for structural rigidity of automobile body. Driven by the need to reduce weight and fuel consumption, car companies have been evaluating aluminum intensive vehicles(AIVs) as a way to reduce vehicle weight without downsizing. During the transition from all steel-construction vehicle body to aluminum intensive body, joining aluminum to steel sheets emerges as a serious contender in automobile body. This paper deals with application of transition material to RSW aluminum to steel. Placing transition material insert between the aluminum/steel interface was found very effective to overcome incompatibility between aluminum and steel. Use of transition insert allows for two separate weld nuggets to be formal in their respective aluminum/aluminum and steel/steel interfaces. This RSW process was monitored with the aid of dynamic resistance sampling. Typical patterns in sampled dynamic resistance curves indicated formation of sound nugget.

  • PDF

재사용 우주 발사체의 TBCC 엔진 성능 설계 기법 (TBCC Engine Performance Design Technique of Reusable Launch Vehicle)

  • 김성진;성홍계
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제31회 추계학술대회논문집
    • /
    • pp.167-170
    • /
    • 2008
  • 아음속과 초음속 영역에서 모두 비행하는 재사용 비행체의 추진기관인 TBCC(Turbine Based Combined Cycle)엔진의 성능 설계 기법에 대한 연구를 수행하였다. 이 엔진은 터보제트엔진과 램제트 엔진의 복합 사이클 엔진으로 구성되어 있으며, 비행 마하수 영역별로 터보제트엔진의 작동과 램제트 엔진의 작동 그리고 터보제트엔진과 램제트엔진이 동시 작동하는 구간으로 구성된다. TBCC엔진의 성능해석 기법을 제안하고, 개별 엔진의 성능 결과를 검증 하였으며, 가상의 비행 영역에서 TBCC엔진의 성능을 해석하였다.

  • PDF

유사물체 치환증강을 통한 기동장비 물체 인식 성능 향상 (Object Detection Accuracy Improvements of Mobility Equipments through Substitution Augmentation of Similar Objects)

  • 허지성;박지훈
    • 한국군사과학기술학회지
    • /
    • 제25권3호
    • /
    • pp.300-310
    • /
    • 2022
  • A vast amount of labeled data is required for deep neural network training. A typical strategy to improve the performance of a neural network given a training data set is to use data augmentation technique. The goal of this work is to offer a novel image augmentation method for improving object detection accuracy. An object in an image is removed, and a similar object from the training data set is placed in its area. An in-painting algorithm fills the space that is eliminated but not filled by a similar object. Our technique shows at most 2.32 percent improvements on mAP in our testing on a military vehicle dataset using the YOLOv4 object detector.

Vehicle-bridge coupling vibration analysis based fatigue reliability prediction of prestressed concrete highway bridges

  • Zhu, Jinsong;Chen, Cheng;Han, Qinghua
    • Structural Engineering and Mechanics
    • /
    • 제49권2호
    • /
    • pp.203-223
    • /
    • 2014
  • The extensive use of prestressed reinforced concrete (PSC) highway bridges in marine environment drastically increases the sensitivity to both fatigue-and corrosion-induced damage of their critical structural components during their service lives. Within this scenario, an integrated method that is capable of evaluating the fatigue reliability, identifying a condition-based maintenance, and predicting the remaining service life of its critical components is therefore needed. To accomplish this goal, a procedure for fatigue reliability prediction of PSC highway bridges is proposed in the present study. Vehicle-bridge coupling vibration analysis is performed for obtaining the equivalent moment ranges of critical section of bridges under typical fatigue truck models. Three-dimensional nonlinear mathematical models of fatigue trucks are simplified as an eleven-degree-of-freedom system. Road surface roughness is simulated as zero-mean stationary Gaussian random processes using the trigonometric series method. The time-dependent stress-concentration factors of reinforcing bars and prestressing tendons are accounted for more accurate stress ranges determination. The limit state functions are constructed according to the Miner's linear damage rule, the time-dependent S-N curves of prestressing tendons and the site-specific stress cycle prediction. The effectiveness of the methodology framework is demonstrated to a T-type simple supported multi-girder bridge for fatigue reliability evaluation.

바퀴 슬립과 잠김 방지 제어를 고려한 차량의 종렬 브레이크 제어 (Vehicle Longitudinal Brake Control with Wheel Slip and Antilock Control)

  • 양홍;최용호;정길도
    • 제어로봇시스템학회논문지
    • /
    • 제11권6호
    • /
    • pp.502-509
    • /
    • 2005
  • In this paper, a 4-wheel vehicle model including the effects of tire slip was considered, along with variable parameter sliding control, in order to improve the performance of the vehicle longitudinal response. The variable sliding parameter is made to be proportional to the square root of the pressure derivative at the wheel, in order to compensate for large pressure changes in the brake cylinder. A typical tire force-relative slip curve for dry road conditions was used to generate an analytical tire force-relative slip function, and an antilock sliding control process based on the analytical tire force-relative slip function was used. A retrofitted brake system, with the pushrod force as the end control parameter, was employed, and an average decay function was used to suppress the simulation oscillations. The simulation results indicate that the velocity and spacing errors were slightly larger than those obtained when the wheel slip effect was not considered, that the spacing errors of the lead and follower were insensitive to the adhesion coefficient up to the critical wheel slip value, and that the limit for the antilock control under non-constant adhesion road conditions was determined by the minimum value of the equivalent adhesion coefficient.

점용접부의 피로수명을 고려한 용접 피치 최적설계 (Optimum Design of Welding Pitch Considering Fatigue Life of Spot Welding Nuggets)

  • 이상범;전상훈;임홍재
    • 한국자동차공학회논문집
    • /
    • 제16권4호
    • /
    • pp.179-185
    • /
    • 2008
  • The purpose of this paper is to propose a systematic method on the weld pitch design of a vehicle sub-frame considering the fatigue life of spot welding points. The input data, which perform the fatigue analysis on the spot welding nuggets, are obtained by both the dynamic analysis of the multi-body vehicle model passing through the virtual proving ground of a typical Belgian road and the quasi-static analysis with the finite element model of the vehicle sub-frame. By utilizing the life cycle data obtained from the fatigue analysis, the welding points to perform the pitch change are determined. The sensitivity analysis on the fatigue life of the welding points is carried out by using the three-level orthogonal array design, and through the results of the sensitivity analysis, the best combination on the welding pitch is determined. This study shows that as compared with the baseline design, the sub-frame redesigned by the proposed technique improves the fatigue life about 7 percent while reducing the number of welding points about 19 percent.

지리정보시스템 기반 경로계획을 이용한 지능형순항제어시스템 개발 (Development of an Intelligent Cruise Control using Path Planning based on a Geographic Information System)

  • 임경일;오재석;이제욱;김정하
    • 제어로봇시스템학회논문지
    • /
    • 제21권3호
    • /
    • pp.217-223
    • /
    • 2015
  • Autonomous driving is no longer atechnology of the future since the development of autonomous vehicles has now been realized, and many technologies have already been developed for the convenience of drivers. For example, autonomous vehicles are one of the most important drive assistant systems. Among these many drive assistant systems, Cruise Control Systems are now a typical technology. This system constantly maintains a vehicle's speed and distance from a vehicle in front by using Radar or LiDAR sensors in real time. Cruise Control Systems do not only serve their original role, but also fulfill another role as a 'Driving Safety' measure as they can detect a situation that a driver did not predict and can intervene by assuming a vehicle's longitude control. However, these systems have the limitation of only focusing on driver safety. Therefore, in this paper, an Intelligent Cruise Control System that utilizes the path planning method and GIS is proposed to overcome some existing limitations.

Variable Parameter Sliding Controller Design for Vehicle Brake with Wheel Slip

  • Liang, Hong;Chong, Kil-To
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1801-1812
    • /
    • 2006
  • In this paper, a 4-wheel vehicle model including the effects of tire slip was considered, along with variable parameter sliding control, pushrod force as the end control parameter, and an antilock sliding control, in order to improve the performance of the vehicle longitudinal response. The variable sliding parameter is made to be proportional to the square root of the pressure derivative at the wheel, in order to compensate for large pressure changes in the brake cylinder. A typical tire force-relative slip curve for dry road conditions was used to generate an analytical tire force-relative slip function, and an antilock sliding control process based on the analytical tire force-relative slip function was used. A retrofitted brake system, with the pushrod force as the end control parameter, was employed, and an average decay function was used to suppress the simulation oscillations. Simulation results indicate that the velocity and spacing errors were slightly larger than the results that without considering wheel slip effect, the spacing errors of the lead and follower were insensitive to the adhesion coefficient up to the critical wheel slip value, and the limit for the antilock control on non-constant adhesion road condition was determined by the minimum of the equivalent adhesion coefficient.

Z-Source Inverter with SiC Power Semiconductor Devices for Fuel Cell Vehicle Applications

  • Aghdam, M. Ghasem Hosseini
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.606-611
    • /
    • 2011
  • Power electronics is a key technology for electric, hybrid, plug-in hybrid, and fuel cell vehicles. Typical power electronics converters used in electric drive vehicles include dc/dc converters, inverters, and battery chargers. New semiconductor materials such as silicon carbide (SiC) and novel topologies such as the Z-source inverter (ZSI) have a great deal of potential to improve the overall performance of these vehicles. In this paper, a Z-source inverter for fuel cell vehicle application is examined under three different scenarios. 1. a ZSI with Si IGBT modules, 2. a ZSI with hybrid modules, Si IGBTs/SiC Schottky diodes, and 3. a ZSI with SiC MOSFETs/SiC Schottky diodes. Then, a comparison of the three scenarios is conducted. Conduction loss, switching loss, reverse recovery loss, and efficiency are considered for comparison. A conclusion is drawn that the SiC devices can improve the inverter and inverter-motor efficiency, and reduce the system size and cost due to the low loss properties of SiC devices. A comparison between a ZSI and traditional PWM inverters with SiC devices is also presented in this paper. Based on this comparison, the Z-source inverter produces the highest efficiency.

도어 모듈 플레이트의 동특성 분석에 관한 연구 (A Study on the Dynamic Characteristics of Door Module Plate)

  • 배철용;김완수;김찬중;이봉현;장운성;모유철
    • 한국소음진동공학회논문집
    • /
    • 제17권9호
    • /
    • pp.853-861
    • /
    • 2007
  • Currently, automotive industries improve the vehicle performance and reduce the development period of vehicle using each module part for the high quality and performance of vehicles. However each component part doesn't generate the noise and vibration problems, sometime these problems are generated on the assembly status between vehicle chassis frame and each module part. On this study, in order to analysis the dynamic characteristics of a shield door module that is a typical module part of vehicles, the acquisition and evaluation process about the vibration and noise of shield door module is developed. Also the possibility to apply to shield door module of the developed process is verified by the comparison with the dynamic characteristics between plastic and steel module plate.