• Title/Summary/Keyword: typhoons

Search Result 555, Processing Time 0.029 seconds

Correlations of Earthquake Accelerations and LPIs for Liquefaction Risk Mapping in Seoul & Gyeonggi-do Area based on Artificial Scenarios (서울, 경기지역의 시나리오별 액상화 위험지도 작성을 위한 지진가속도와 LPI 상관관계 분석)

  • Baek, Woohyun;Choi, Jaesoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.5-12
    • /
    • 2019
  • On November 15, 2017, a unpredictable liquefaction damage was occurred at the $M_L=5.4$ Pohang earthquake and after, many researches have been conducted in Korea. In Korea, where there were no cases of earthquake damage, it has been extremely neglectable in preparing earthquake risk maps and building earthquake systems that corresponded to prevention and preparation. Since it is almost impossible to observe signs and symptoms of drought, floods, and typhoons in advance, it is very effective to predict the impacts and magnitudes of seismic events. In this study, 14,040 borehole data were collected in the metropolitan area and liquefaction evaluation was performed using the amplification factor. Based on this data, liquefaction hazard maps were prepared for ground accelerations of 0.06 g, 0.14 g, 0.22 g, and 0.30 g, including 200years return period to 4,800years return period. Also, the correlation analysis between the earthquake acceleration and LPI was carried out to draw a real-time predictable liquefaction hazard map. As a result, 707 correlation equations in every cells in GIS map were proposed. Finally, the simulation for liquefaction risk mapping against artificial earthquake was performed in the metropolitan area using the proposed correlation equations.

Development of Landslide Detection Algorithm Using Fully Polarimetric ALOS-2 SAR Data (Fully-Polarimetric ALOS-2 자료를 이용한 산사태 탐지 알고리즘 개발)

  • Kim, Minhwa;Cho, KeunHoo;Park, Sang-Eun;Cho, Jae-Hyoung;Moon, Hyoi;Han, Seung-hoon
    • Economic and Environmental Geology
    • /
    • v.52 no.4
    • /
    • pp.313-322
    • /
    • 2019
  • SAR (Synthetic Aperture Radar) remote sensing data is a very useful tool for near-real-time identification of landslide affected areas that can occur over a large area due to heavy rains or typhoons. This study aims to develop an effective algorithm for automatically delineating landslide areas from the polarimetric SAR data acquired after the landslide event. To detect landslides from SAR observations, reduction of the speckle effects in the estimation of polarimetric SAR parameters and the orthorectification of geometric distortions on sloping terrain are essential processing steps. Based on the experimental analysis, it was found that the IDAN filter can provide a better estimation of the polarimetric parameters. In addition, it was appropriate to apply orthorectification process after estimating polarimetric parameters in the slant range domain. Furthermore, it was found that the polarimetric entropy is the most appropriate parameters among various polarimetric parameters. Based on those analyses, we proposed an automatic landslide detection algorithm using the histogram thresholding of the polarimetric parameters with the aid of terrain slope information. The landslide detection algorithm was applied to the ALOS-2 PALSAR-2 data which observed landslide areas in Japan triggered by Typhoon in September 2011. Experimental results showed that the landslide areas were successfully identified by using the proposed algorithm with a detection rate of about 82% and a false alarm rate of about 3%.

Investigation of Death Years and Inter-annual Growth Reduction of Korean Firs (Abies Koreana) at Yeongsil in Mt. Halla (한라산 영실지역 구상나무 고사연도와 시계열적 생육쇠퇴도 조사)

  • Seo, Jeong-Woo;Kim, Yo-Jung;Choi, En-Bi;Park, Jun-Hui;Kim, Jae-Hoon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.3
    • /
    • pp.1-14
    • /
    • 2019
  • With a view to developing a database of death years of Korean firs (Abies koreana) at Yeongsil in Mt. Halla and investigating their abrupt inter-annual growth reduction tree-ring analysis was employed. To this end, 10 living trees (YSL) were selected to establish a master chronology and 20 dead trees were used to date their dead years. To investigate the difference in death years by death types, 10 trees, which remained standing (YSSD) out of the 20 dead trees were selected. The rest 10 dead trees were already fallen (YSFD). Two increment cores per tree at breast height were extracted in contour direction using an increment borer. A 106-year master chronology (1911-2016) was successfully established from the 10 YSLs. Through cross-dating between individual YSSD time series and the master chronology, it was verified that 1 YSSD was dead in summer 1978, 1 YSSD between autumn 1999 and spring 2000, 2 YSSDs in summer 2007, 1 YSSD in summer 2010, 1 YSSD in summer 2012, and 1 YSSD in summer 2013. The youngest tree rings of 2 YSSDs having no bark were in 1977 and 2002. For the YSFDs, it was verified that 1 YSFD was dead between autumn 1997 and spring 1998, 1 YSFD between autumn 2001 and spring 2002, 2 YSFDs between autumn 2009 and spring 2010, 1 YSFD in summer 2010, and 2 YSFDs between autumn 2012 and spring 2013, while the youngest tree rings of 2 YSFDs having no bark were in 1989 and 2004. To note, the death years of two trees, one from each death type (YSSD and YSFD), could not be verified due to poor cross-dating with the master chronology. The inter-annual growth reductions of YSSD and YSFD occurred more frequently and intensively than YSL. Typically, the YSFD showed the most frequent and intensive inter-annual growth reduction. On comparing the inter-annual growth reductions with the corresponding records of typhoons however we could not find any reliable relationship. Finally, from prior reports and results of the current study it can be concluded that the death and abrupt growth reduction of korean fir at Yeongsil in Mt. Halla are not caused by only a certain environmental factor but various factors.

The Effect of Natural Disaster Safety Education on Young Children's Safety Problem-solving Abilities and Eco-friendly Attitudes (자연재해 안전교육이 유아의 안전문제해결사고 및 환경 친화적 태도에 미치는 영향)

  • Lim, Eun Ok;Kim, Ji Eun
    • Korean Journal of Child Education & Care
    • /
    • v.18 no.4
    • /
    • pp.227-245
    • /
    • 2018
  • Objective: In this study, educational activities were organized to emphasize the importance of natural disaster safety education by reflecting the recent rapid increases in natural disasters. The study focused on story-sharing, art, and game activities to effectively conduct natural disaster safety education for four-year-old children, and in doing so, aimed to improve the children's safety problem-solving abilities and eco-friendly attitude. Methods: Based on the types of natural disasters that are handled by the Ministry of Public Administration and Security and the Chungcheongbuk-do Office of Education, earthquakes, yellow dust, heat waves, floods, typhoons, bolts of lighting, fires, snowstorms, and global warming were included as the study's educational contents, and a total 20 sessions of natural disaster safety education activities were planned. For the subjects, 20 four-year-old children at K Kindergarten attached to a school were selected as an experimental group and 20 four-year-old children at N Kindergarten attached to a school were selected as a control group. Both kindergartens were located in C City, Chungcheongbuk-do. The experimental group was instructed to perform the study's education activities, whereas the control group only carried out general activities based on the Nuri Curriculum's subjects of daily life. Results: As a result, the children in the experimental group, who received the natural disaster safety education, improved their safety problem-solving abilities and eco-friendly attitude when compared to those in the control group. This outcome proved that the natural disaster safety education conducted by the present study offers educational activities that can positively affect improvements in children's safety problem-solving abilities and eco-friendly attitude. Conclusion/Implications: Therefore, the present study is likely to provide concrete information to teachers who plan to conduct natural disaster safety education in the actual early childhood education field.

Erosion and Recovery Processes in Haeundae Beach by the Invading Typhoon Chaba in 2016 (2016년 태풍 차바 내습 전후의 해운대 해빈의 침식과 회복 과정)

  • Lee, Young Yun;Chang, Tae Soo
    • Journal of the Korean earth science society
    • /
    • v.40 no.1
    • /
    • pp.37-45
    • /
    • 2019
  • In spite of continued nourishments, Haeundae Beach in Busan has been suffering from erosion, this being caused by the increased wave energy due to global warming and intermittent typhoon reported by previous works. In the meantime, the typhoon Chaba hit Basan in October 2016. In order to investigate the effects of the typhoon in beach erosion and how fast the beach recovered after the typhoon, repeated beach profiling using a VRS-GPS system was carried out, and the grain size analyses for surface sediments sampled on the beach were conducted. Immediately after the typhoon invasion, Haeundae beach was eroded by 1.4 m in average height. The mean high tide lines were retreated back by 12 m, and beach slope became gentler from $3.8^{\circ}$ to $1.7^{\circ}$. The mean grain sizes of surface sediments became coarser from $1.6{\Phi}$ to $1.2{\Phi}$ after two months, and the sorting well sorted. After two months of typhoon landfall, the mean high tide lines have recovered by 85%, and the beach topography almost recovered. This suggests that the impact of typhoons on Haeundae beach erosion is negligible, and the relaxation time is shorter than that of other beaches.

Development for Prediction Model of Disaster Risk through Try and Error Method : Storm Surge (시행 착오법을 활용한 재난 위험도 예측모델 개발 : 폭풍해일)

  • Kim, Dong Hyun;Yoo, HyungJu;Jeong, SeokIl;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.37-43
    • /
    • 2018
  • The storm surge is caused by an typhoons and it is not easy to predict the location, strength, route of the storm. Therefore, research using a scenario for storms occurrence has been conducted. In Korea, hazard maps for various scenarios were produced using the storm surge numerical simulation. Such a method has a disadvantage in that it is difficult to predict when other scenario occurs, and it is difficult to cope with in real time because the simulation time is long. In order to compensate for this, we developed a method to predict the storm surge damage by using research database. The risk grade prediction for the storm surge was performed predominantly in the study area of the East coast. In order to estimate the equation, COMSOL developed by COMSOL AB Corporation was utilized. Using some assumptions and limitations, the form of the basic equation was derived. the constants and coefficients in the equation were estimated by the trial and error method. Compared with the results, the spatial distribution of risk grade was similar except for the upper part of the map. In the case of the upper part of the map, it was shown that the resistance coefficient, k was calculated due to absence of elevation data. The SIND model is a method for real-time disaster prediction model and it is expected that it will be able to respond quickly to disasters caused by abnormal weather.

A Study on the Safety Evaluation of the Landing Pier Structure Using FBG Sensor (FBG 센서를 이용한 잔교식 안벽 구조물의 안전성 평가에 대한 연구)

  • Lee, Heung-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.44-50
    • /
    • 2019
  • The underwater structures of landing pier are not easy to access and it is difficult to check the damage. Lately, typhoons and earthquakes have occurred frequently, which may cause damage to underwater structures of landing pier. In this study, to prevent collapse of underwater structures and to maintain systematically, the application method of FBG sensors and safety evaluation methods were studied. In order to confirm the application of the FBG sensor to the circular steel pipe used as a pile on the landing pier, we conducted laboratory tests and confirmed that the FBG sensor should be applied by welding. As a result of structural analysis of the landing pier structure, the optimal position of FBG sensor confirmed. The stresses on the dead load were calculated by structural analysis, the stresses on the live load were calculated by using the data obtained from the FBG sensor, and then the stress acting on the pile was calculated by adding the two stresses. The calculated stress was compared with the allowable stress to evaluate the safety of the pile. This study was carried out as a basic study to find a way to evaluate the safety of the landing pier in real time.

Correlation Analysis between Beach Width and Wave Data on the East Coast of South Korea (동해안 주요 해빈의 해빈폭과 파랑의 상관성 분석)

  • Oh, Jung-Eun;Jeong, Weon-Mu;Kim, Ki-Hyun;Kang, Tae-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.2
    • /
    • pp.73-87
    • /
    • 2019
  • Ocean waves are the driving force for the sediment transport and the beach process. However, wave actions are nonlinear and non-stationary, and the response of the beach is inconsistent in terms of reaction rate and magnitude. Therefore, the beach process is difficult to predict accurately. The purpose of this study is to identify the correlations between the shoreline change and ocean waves observed in the east coast of Korea. The relation of the beach width obtained from video monitoring at five sandy beaches and the wave data obtained from nearby wave monitoring at three points was analyzed. Although the correlations estimated over the whole data sets was not significant, the correlations estimated based on the seasonal period or wave conditions provided more noteworthy information. When the non-exceedance probability of the wave height was greater than 0.99, the wave period and beach width showed strong negative correlations. In case the non-exceedance probability of the wave period was greater than 0.99, the wave height and beach width showed strong negative correlations as well. Furthermore, the erosion rate of the beach width increased when the primary wave direction was close to normal to the coastline. Little significant seasonal or monthly change was found between the beach width and the wave, but it was greatly affected by intensive events such as typhoons. Thus, it is necessary to analyze in detail the wave height or period level explaining the change of beach width for more relevant and practical information.

Vulnerability Analyses of Wave Overtopping Inundation by Synthesized Typhoons with Sea-Level Rise (해수면 상승과 빈도 합성태풍이 고려된 월파범람 위험성 분석)

  • Kim, HyeonJeong;Suh, SeungWon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.253-264
    • /
    • 2019
  • Storm surges caused by a typhoon occur during the summer season, when the sea-level is higher than the annual average due to steric effect. In this study, we analyzed the sea-level pressure and tidal data collected in 1 h intervals at Incheon, Kunsan, Mokpo, Seogwipo stations on the Yellow Sea coast to analyze the summer season storm surge and wave overtopping. According to our analyses, the summer mean sea-level rise on the west and south coasts is approximately 20 cm and 15 to 20 cm higher than the annual mean sea-level rise. Changes in sea-level rise are closely related to changes in seasonal sea-level pressure, within the range of 1.58 to 1.73 cm/hPa. These correlated mechanisms generates a phase difference of one month or more. The 18.6 year long period tidal constituents indicate that in 2090, the amplitude of the $M_2$ basin peaks on the southwest coast. Therefore, there is a need to analyze the target year for global warming and sea-level rise in 2090. Wave overtopping was simulated considering annual mean sea-level rise, summer sea level rise, the combined effect of nodal factor variation, and 100-year frequency storm surge. As a result, flooding by wave overtopping occurs in the area of Suyong Bay, Busan. In 2090, overtopping discharges are more than doubled than those in Marine City by the recent typhoon Chaba. Adequate coastal design is needed to prepare for flood vulnerability.

Field Observation of Morphological Response to Storm Waves and Sensitivity Analysis of XBeach Model at Beach and Crescentic Bar (폭풍파랑에 따른 해빈과 호형 사주 지형변화 현장 관측 및 XBeach 모델 민감도 분석)

  • Jin, Hyeok;Do, Kideok;Chang, Sungyeol;Kim, In Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.446-457
    • /
    • 2020
  • Crescentic sand bar in the coastal zone of eastern Korea is a common morphological feature and the rhythmic patterns exist constantly except for high wave energy events. However, four consecutive typhoons that directly and indirectly affected the East Sea of Korea from September to October in 2019 impacted the formation of longshore uniform sand bar and overall shoreline retreats (approx. 2 m) although repetitive erosion and accretion patterns exist near the shoreline. Widely used XBeach to predict storm erosions in the beach is utilized to investigate the morphological response to a series of storms and each storm impact (NE-E wave incidence). Several calibration processes for improved XBeach modeling are conducted by recently reported calibration methods and the optimal calibration set obtained is applied to the numerical simulation. Using observed wave, tide, and pre & post-storm bathymetries data with optimal calibration set for XBeach input, XBeach successfully reproduces erosion and accretion patterns near MSL (BSS = 0.77 (Erosion profile), 0.87 (Accretion profile)) and observed the formation of the longshore uniform sandbar. As a result of analysis of simulated total sediment transport vectors and bed level changes at each storm peak Hs, the incident wave direction contributes considerable impact to the behavior of crescentic sandbar. Moreover, not only the wave height but also storm duration affects the magnitude of the sediment transport. However, model results suggest that additional calibration processes are needed to predict the exact crest position of bar and bed level changes across the inner surfzone.