• Title/Summary/Keyword: typhoon storm

Search Result 192, Processing Time 0.021 seconds

Potential Impacts of Future Extreme Storm Events on Streamflow and Sediment in Soyang-dam Watershed (기후변화에 따른 미래 극한호우사상이 소양강댐 유역의 유량 및 유사량에 미치는 영향)

  • Han, Jeong Ho;Lee, Dong Jun;Kang, Boosik;Chung, Se Woong;Jang, Won Seok;Lim, Kyoung Jae;Kim, Jonggun
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.2
    • /
    • pp.160-169
    • /
    • 2017
  • The objective of this study are to analyze changes in future rainfall patterns in the Soyang-dam watershed according to the RCP 4.5 scenario of climate change. Second objective is to project peak flow and hourly sediment simulated for the future extreme rainfall events using the SWAT model. For these, accuracy of SWAT hourly simulation for the large scale watershed was evaluated in advance. The results of model calibration showed that simulated peak flow matched observation well with acceptable average relative error. The results of future rainfall pattern changes analysis indicated that extreme storm events will become more severe and frequent as climate change progresses. Especially, possibility of occurrence of large scale extreme storm events will be greater on the periods of 2030-2040 and 2050-2060. In addition, as shown in the SWAT hourly simulation for the future extreme storm events, more severe flood and turbid water can happen in the future compared with the most devastating storm event which occurred by the typhoon Ewiniar in 2006 year. Thus, countermeasures against future extreme storm event and turbid water are needed to cope with climate change.

Development of the Combined Typhoon Surge-Tide-Wave Numerical Model 2. Verification of the Combined model for the case of Typhoon Maemi (천해에 적용가능한 태풍 해일-조석-파랑 수치모델 개발 2. 태풍 매미에 의한 해일-조석-파랑 모델의 정확성 검토)

  • Chun, Je-Ho;Ahn, Kyung-Mo;Yoon, Jong-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.1
    • /
    • pp.79-90
    • /
    • 2009
  • This paper presents the development of dynamically combined Typhoon generated surge-tide-wave numerical model which is applicable from deep to shallow water. The dynamically coupled model consists of hydrodynamic module and wind wave module. The hydrodynamic module is modified from POM and wind wave module is modified from WAM to be applicable from deep to shallow water. Hydrodynamic module computes tidal currents, sea surface elevations and storm surges and provide these information to wind wave module. Wind wave mudule computes wind waves and provides computed information such as radiation stress, sea surface roughness and shear stress due to winds. The newly developed model was applied to compute the surge, tide and wave fields by typhoon Maemi. Verification of model performance was made by comparison of measured waves and tide data with simulated results.

A Study on the Meteorological Disaster of Fisheries and Ocean Institution in Jeju Island (제주도 수산해양시설의 기상재해에 관한 연구)

  • Ahn, Young-Wha;Kim, Jun-Teck;Ko, Hee-Jong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.18 no.2
    • /
    • pp.137-149
    • /
    • 2006
  • The typhoon, heavy rain, blizzard, storm and heavy snowfall had the main caused of natural disasters occurred in Korea from 1993 to 2002. Among them, typhoon has responsible for biggest disaster, recording about 47.4% of total economic damage. Typhoons concentrated mostly in the months from June to October. The average occurrence number in those months ranged from 3.9 to 5.5 based on 30 years of record(1971-2000). However, the numbers increased from 4.0 to 6.2 during the most recent 10 years(1991-2000). Jeju province, among others in Korea, was most frequently affected by typhoon which occurred 23 times during the period of 1991-2000. Typhoons which occurred from July to early August have passed mostly through the west of Jeju, whereas, those of late August to September have passed through the center and eastern sea area of Jeju. The typhoons 'Ramasun' and 'Rusa' caused severe damage in Jeju area in September 2003 and the surge heights were +39cm and +77cm, respectively. The main cause of the damage was surge height which was highly associated with the tidal phase at the time of typhoon passage. The damage caused by typhoon on the aquaculture, fishing boat and harbor cosatline wall around Jeju Island which was amounted to be 417 billion won(\) during the recent 3 years(2002-2004)

Erosion and Recovery of Coastal Dunes after Tropical Storms (태풍의 통과로 인한 해안사구 지형의 침식과 회복)

  • Choi, Kwang Hee;Jung, Pil Mo;Kim, Yoonmi;Suh, Min Hwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.1
    • /
    • pp.17-27
    • /
    • 2012
  • Coastal dunes help stabilize the coastal landscape and protect the hinterland through dynamic interaction with sand beaches. Sometimes dune erosion occurs during the tropical cyclones, while dune recovery may naturally follow after the event. As the typhoon Kompasu passed through the Korean Peninsula early-September in 2010, it caused a rise in water in association with the storm, wave run-ups, and heavy rains in coastal areas. As the result, coastal dunes along the west coast of Korea were severely damaged during the storm. However, the degree and extent of erosion and recovery of dunes were found to be related with the condition of beach-dune systems including gradients of foreshore and front slope of the dune, sediment supply, vegetation, wind activity, and human interferences. Some dunes retreated landward more and more after the erosional event, while others recovered its original profile by aeolian transport processes mainly during the winter season. Vegetated dunes with pine trees were less recovered after the erosion than grass-covered dunes. In addition, dunes with artificial defense were more eroded and less recovered than those without hard constructions. According to the observation after the severe storm, it is likely that the sand transport process is critical to the dune recovery. Therefore, the interactions between beach and dune must be properly evaluated from a geomorphological perspective for the effective management of coastal dunes, including natural recovery after the erosion by storm events.

Performance Comparison between Neural Network Model and Statistical Model for Prediction of Damage Cost from Storm and Flood (신경망 모델과 확률 모델의 풍수해 예측성능 비교)

  • Choi, Seon-Hwa
    • The KIPS Transactions:PartB
    • /
    • v.18B no.5
    • /
    • pp.271-278
    • /
    • 2011
  • Storm and flood such as torrential rains and major typhoons has often caused damages on a large scale in Korea and damages from storm and flood have been increasing by climate change and warming. Therefore, it is an essential work to maneuver preemptively against risks and damages from storm and flood by predicting the possibility and scale of the disaster. Generally the research on numerical model based on statistical methods, the KDF model of TCDIS developed by NIDP, for analyzing and predicting disaster risks and damages has been mainstreamed. In this paper, we introduced the model for prediction of damage cost from storm and flood by the neural network algorithm which outstandingly implements the pattern recognition. Also, we compared the performance of the neural network model with that of KDF model of TCDIS. We come to the conclusion that the robustness and accuracy of prediction of damage cost on TCDIS will increase by adapting the neural network model rather than the KDF model.

Vulnerability Analyses of Wave Overtopping Inundation by Synthesized Typhoons with Sea-Level Rise (해수면 상승과 빈도 합성태풍이 고려된 월파범람 위험성 분석)

  • Kim, HyeonJeong;Suh, SeungWon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.253-264
    • /
    • 2019
  • Storm surges caused by a typhoon occur during the summer season, when the sea-level is higher than the annual average due to steric effect. In this study, we analyzed the sea-level pressure and tidal data collected in 1 h intervals at Incheon, Kunsan, Mokpo, Seogwipo stations on the Yellow Sea coast to analyze the summer season storm surge and wave overtopping. According to our analyses, the summer mean sea-level rise on the west and south coasts is approximately 20 cm and 15 to 20 cm higher than the annual mean sea-level rise. Changes in sea-level rise are closely related to changes in seasonal sea-level pressure, within the range of 1.58 to 1.73 cm/hPa. These correlated mechanisms generates a phase difference of one month or more. The 18.6 year long period tidal constituents indicate that in 2090, the amplitude of the $M_2$ basin peaks on the southwest coast. Therefore, there is a need to analyze the target year for global warming and sea-level rise in 2090. Wave overtopping was simulated considering annual mean sea-level rise, summer sea level rise, the combined effect of nodal factor variation, and 100-year frequency storm surge. As a result, flooding by wave overtopping occurs in the area of Suyong Bay, Busan. In 2090, overtopping discharges are more than doubled than those in Marine City by the recent typhoon Chaba. Adequate coastal design is needed to prepare for flood vulnerability.

Sea Environmental Design Criteria for Coastal and Offshore Structures

  • Liu, Defu
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.19-22
    • /
    • 1996
  • Extreme sea statistics and combinations of environmental events or response for structures are very important problem in performance evaluation and design of coastal and Offshore structures. A probabilistic method is developed that leads to the combination of Typhoon (Hurricane) or winter storm induces winds, waves, currents and surge for a generic site. The traditional recommendation for the fixed structures is a combination of the 100 years maximum wave height with the 100 years wind and current. (omitted)

  • PDF

Calculation of Abnormallly Large Flood Discharge Amount Destroying the Stage Gaging Station (이상 호우에 의하여 붕괴된 수위국 지점의 홍수량 규모 결정)

  • Yoo, Ju-Hwan;Kim, Joo-Cheol
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.675-678
    • /
    • 2008
  • An abnormal storm by the typhoon of RUSA in 2002th year was broken out with tremendous flood demages and inundations on the basin of Chogangcheon located in the upper middle part of Guem river's upstream. This flood could not be engaged because it was so big that the stage engaging Songcheon station stuck to Songcheon bridge was destroyed by submerging. In this study the quantity of the flood was calculated by use of Manning's equation and suitable roughness coefficient was suggested.

  • PDF

Spatial Analysis of Typhoon Genesis Distribution based on IPCC AR5 RCP 8.5 Scenario (IPCC AR5 RCP 8.5 시나리오 기반 태풍발생 공간분석)

  • Lee, Sungsu;Kim, Ga Young
    • Spatial Information Research
    • /
    • v.22 no.4
    • /
    • pp.49-58
    • /
    • 2014
  • Natural disasters of large scale such as typhoon, heat waves and snow storm have recently been increased because of climate change according to global warming which is most likely caused by greenhouse gas in the atmosphere. Increase of greenhouse gases concentration has caused the augmentation of earth's surface temperature, which raised the frequency of incidences of extreme weather in northern hemisphere. In this paper, we present spatial analysis of future typhoon genesis based on IPCC AR5 RCP 8.5 scenario, which applied latest carbon dioxide concentration trend. For this analysis, we firstly calculated GPI using RCP 8.5 monthly data during 1982~2100. By spatially comparing the monthly averaged GPIs and typhoon genesis locations of 1982~2010, a probability density distribution(PDF) of the typhoon genesis was estimated. Then, we defined 0.05GPI, 0.1GPI and 0.15GPI based on the GPI ranges which are corresponding to probability densities of 0.05, 0.1 and 0.15, respectively. Based on the PDF-related GPIs, spatial distributions of probability on the typhoon genesis were estimated for the periods of 1982~2010, 2011~2040, 2041~2070 and 2071~2100. Also, we analyzed area density using historical genesis points and spatial distributions. As the results, Philippines' east area corresponding to region of latitude $10^{\circ}{\sim}20^{\circ}$ shows high typhoon genesis probability in future. Using this result, we expect to estimate the potential region of typhoon genesis in the future and to develop the genesis model.

The Climatological Characteristics of the Landfall Typhoons on North Korea (북한에 상륙한 태풍의 기후학적 특성)

  • Ahn, Suk-Hee;Kim, Baek-Jo;Park, So-Yeon;Park, Gil-Un
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.239-246
    • /
    • 2010
  • In this study, the climatological characteristics of the landfall typhoons on North Korea are surveyed to estimate the frequency, the intensity, the track, and their damage. The data for the period of 1951-2008 are used from both RSMC (Regional Specialized Meteorological Center) Tokyo Typhoon Center and NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research), EM-DAT (Emergency Events Database). There are the ten highest frequencies from 1961 to 1965 and is one frequency for the period of both 1966-1979 and 1976-1980 respectively. Even if a clear trend on the frequency of typhoon is not defined, it is noticeable the intensity has been weak since the frequency of TS (Tropical Storm) decreased. In order to figure out both the characteristic of intensity and the relation between the typhoon track and the expansion of North Pacific High (NPH), Typhoon's tracks are classified into three types as follows: (I) landing on the west coast of North Korea through the mainland of China, (II) landing on the west coast of North Korea, (III) landing on a central/eastern part of the Korean peninsula through South Korea. More often than not, the characteristic of Type (I) is the case of a landfall after it becomes extratropical cyclone. Type(II) and Type(III) show a landfall as TS grade, by comparision. On the relation between the typhoon's track and the expansion of NPH analyzed, Type (I) shows the westward expansion while both Type (II) and Type (III) show the northward expansion and development of NPH. This means the intensity of a typhoon landfall on North Korea is variable depending on the development of NPH. Finally, only two cases are found among total five cases in EM-DAT, reportedly that North Korea was damaged. And therefore, the damage by the wind of Prapiroon (the $12^{th}$ typhoon, 2000) and heavy rainfall with Rusa (the $15^{th}$ typhoon, 2002) landing on North Korea was analyzed. Moreover, it is estimated both Prapiroon and Rusa have done badly damaged to North Korea as the economical losses of as much as six billion and five hundred-thousand US dollar, respectively.