• Title/Summary/Keyword: typhoon storm

Search Result 192, Processing Time 0.026 seconds

Estimation of Inundation Damages of Urban area Around Haeundae Beach Induced by Super Storm Surge Using Airborne LiDAR Data (항공 LiDAR 자료를 이용한 슈퍼태풍 내습시 해운대 해수욕장 인근 도심지역 침수 피해 규모 추정)

  • Han, Jong-Gyu;Kim, Seong-Pil;Chang, Dong-Ho;Chang, Tae-Soo
    • Spatial Information Research
    • /
    • v.17 no.3
    • /
    • pp.341-350
    • /
    • 2009
  • As the power and scale of typhoons are growing due to global warming and socioeconomic damages induced by super-typhoons are increasing, it is important to estimate inundation damages and to prepare proper adaptation plans against an attack of the super-typhoon. In this paper, we estimated the inundation damages of urban area around Haeundae beach induced by super-typhoons which follow the route of Typhoon Maemi with the conditions of Typhoon Vera (Ise Bay in Japan, 1959), Typhoon Durian (Philippine, 2006) and Hurricane Katrina (New Oleans in U.S.A, 2005). The coastal area around the Haeundae beach (Busan and Gyeongnam province) is expectedly damaged by severe storm surges. In this study we calculated the rise of sea level height after harmonizing the different datum levels of land and ocean and estimated the inundation depth, inundation area and the amount of building damages by using airborne LiDAR data and GIS spatial analysis techniques more accurately and quantitatively. As many researchers are predicting that super-typhoon of overwhelming power will occur around the Korean peninsula in the near future, the results of this study are expected to contribute to producing coastal inundation map and evacuation planning.

  • PDF

Numerical Simulation of Coastal Urban Inundation due to Storm Surge and Rainfall (폭풍해일과 강우에 의한 해안 도시 범람 수치모의)

  • Kim, Gun Hyeong;Pyo, Chang Kyu;Yoon, Sung Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.6
    • /
    • pp.388-396
    • /
    • 2014
  • In this study, numerical simulations are conducted for the inundations due to storm surge and rainfall at Masan City of Korea where severe damages occurred by the typhoon Maemi. A coupled numerical model which can deal with various flow patterns such as storm surge, rainfall and sewer flows is employed. The numerical results show that the inundation area and depth increase significantly when the combined effects of storm surge and rainfall are considered in comparison with those obtained without a rainfall effect. Further numerical simulations are conducted to evaluate the performance of the sea wall being constructed for the coastal defence. The results show that the maximum inundation depths decrease when the sea wall is constructed. However, the duration of inundation becomes longer, because the rainwater on the ground cannot be discharged easily to the sea due to the presence of the sea wall.

Numerical Modeling of Storm Surge around the Coast of Pusan (부산연안 폭풍해일 변동양상과 수치예측)

  • 이종섭;주귀홍;장선덕
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.2
    • /
    • pp.104-111
    • /
    • 1990
  • The water level variation due to the Typhoon around the coast of Pusan in the southern sea of Korea is investigated from the observed tidal record. Water level variations at six stations along the coast are discussed in association with the meteorological data. The characteristics of storm surge at Pusan during Typhoon Thelma in 1987 is analysed using the observed data, and it is performed the numerical simulation of storm surge which includes a inverse barometric effect due to the horizontal distribution of sea sur-face pressure. From the calculation results, the peak value of storm surge in the coast of Pusan was occur-red around the 01:00 July 16th, which is well coincident with the observed water level variation at the Kadukdo. However, the calculated value at the Pusan TBM is inconsistent with the observed one, which is regarded due to a reason that the Tidal Bench Mark (TBM) locates in the channel. In the computation results, the maximum surge occurs at the coast of Nakdong estuary, which is considered primarily due to a topographic effect, and water level variation exceeded 2.5 meter in these areas while only about 60 cm in another coasts.

  • PDF

Quantification of Storm Direction for a River Basin (하천유역에 대한 호우 방향성의 정량화)

  • Park, Chang-Yeol;Yoo, Chul-Sang
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.109-117
    • /
    • 2010
  • This study quantified the storm direction for a river basin by applying the von Mises distribution, also determined the representative storm direction. Additionally, the whole procedure was repeated for several storm types such as frontal, typhoon and convective storms for their comparison. From the results derived by analyzing a total of 101 storm events for the Naesung river basin, the von Mises distribution was found to explain the directional characteristics of storms. The representative moving directions derived for three different storm types were significantly different each other, which is coincident with the climate of Korea. The results derived in this study could be helpful to estimate more quantitatively the difference in the runoff response with respect to the moving direction of a storm.

Methodology for Risk Assessment for Exposure to Hurricane Conditions

  • Edge, Billy L.;Jung, Kwang-Hyo
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.1
    • /
    • pp.37-49
    • /
    • 2012
  • An analysis of potential flooding by storm surge and wave run-up and overtopping can be used to evaluate protection afforded by the existing storm protection system. The analysis procedure can also be used to evaluate various protection alternatives for providing typhoon flood protection. To determine risk, the storm surges for both historical and hypothetical are compiled with tide conditions to represent high, slack and low water for neap, spring and mid range tides to use with the statistical procedure known as the Empirical Simulations Technique (EST). The EST uses the historic and hypothetical events to generate a large population of life-cycle databases that are used to compute mean value maximum storm surge elevation frequency relationships. The frequency-of-occurrence relationship is determined for all relevant locations along the shoreline at appropriate locations to identify the effect using the Empirical Storm Simulation (EST). To assist with understanding the process, an example is presented for a study of storm surge analysis for Freeport, Texas. This location is in the Gulf of Mexico and is subject to hurricanes and other tropical storms that approach from the Atlantic Ocean.

Seasonal Predictability of Typhoon Activity Using an Atmospheric General Circulation Model and Observed Sea Surface Temperature Data (대기 대순환 모헝과 해수면 온도 관측 자료를 이용한 태풍 활동의 계절 예측 가능성)

  • Han, Ji-Young;Baik, Jong-Jin
    • Journal of the Korean earth science society
    • /
    • v.27 no.6
    • /
    • pp.653-658
    • /
    • 2006
  • The seasonal predictability of typhoon activity over the western North Pacific is investigated using an atmospheric general circulation model GCPS. A ten-member ensemble with different initial conditions is integrated for five months using observed sea surface temperature data for each year from 1979 to 2003. It is shown that the monthly variation of occurrence frequency of simulated tropical storms and the distribution of tropical storm genesis location are similar to those of observed tropical storms, but the model is unable to reliably predict the interannual variation of the occurrence frequency of tropical storms. This is largely because the observed relationship between tropical storm occurrence frequency and ENSO is different from the simulated one. Unlike the observation, in which the tropical storm occurrence frequency has no relation to ENSO, the model has a tendency to generate more (less) tropical storms than normal during El Nino (La Nina). On the other hand, the interannual variation of the mean longitude of tropical storms that shows a close connection with ENSO in both observations and simulations is simulated similar to the observation.

Storm Surge Caused by the Typhoon in Kwangyang Port (광양항에서의 폭풍해일 검토)

  • Kim, Hyeon-Seong;Im, Hyo-Hyuc;Han, Dong-Hoon;Kim, Pyeong-Joong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.205-206
    • /
    • 2006
  • The surges caused by the typhoon of Korea are analysed in Kwangyang Bay. The deviations of the high water level were $74{\sim}185cm$ and the maximum deviations of the water level (maximum surges) were $151{\sim}240cm$ in Kwangyang Bay during the typhoon. The major parameters of the maximum deviations of the water level are as follows : Analysis shows that the pressure drop increased the sea level by $43{\sim}59cm$, the flood of the Sumjin River by $4{\sim}5cm$ and the external surge propagation and wind setup by $97{\sim}192cm$.

  • PDF

Analysis of Reliability of Weather Fields for Typhoon Maemi (0314) (태풍 기상장의 신뢰도 분석: 태풍 매미(0314))

  • Yoon, Sung Bum;Jeong, Weon Mu;Jho, Myeong Hwan;Ryu, Kyong Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.351-362
    • /
    • 2020
  • Numerical simulations of the storm surge and waves induced by the Typhoon Maemi incident on the south sea of Korea in 2003 are performed using the JMA-MSM forecast weather field, NCEP-CFSR reanalysis weather field, ECMWF-ERA5 reanalysis weather field, and the pressure and wind fields obtained using the best track information provided by JTWC. The calculated surge heights are compared with the time history observed at harbours along the coasts of Korea. For the waves occurring coincidentally with the storm surges the calculated significant wave heights are compared with the measured data. Based on the comparison of surge and wave heights the assessment of the reliability of various weather fields is performed. As a result the JMA-MSM weather fields gives the highest reliability, and the weather field obtained using JTWC best track information gives also relatively good agreement. The ECMWF-ERA5 gives in general surge and wave heights weaker than the measured. The reliability of NCEP-CFSR turns out to be the worst for this special case of Typhoon Maemi. Based on the results of this study it is found that the reliable weather fields are essential for the accurate simulation of storm surges and waves.

NUMERICAL MODEL FOR STORM SURGES

  • Yamashita, Takao;Bekku, Isao
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.1-4
    • /
    • 1995
  • Storm surges are defined as abnormal changes of sea surface elevation whose periods range from several hours to days. The generation mechanism is separated into two. One is sea water suction due to atmospheric depression and the other is wind-driven sea water circulation. The former is a forced long-wave motion which is accompanied by a typhoon. (omitted)

  • PDF