DOI QR코드

DOI QR Code

Analysis of Reliability of Weather Fields for Typhoon Maemi (0314)

태풍 기상장의 신뢰도 분석: 태풍 매미(0314)

  • Yoon, Sung Bum (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Jeong, Weon Mu (Maritime ICT R&D Center, Korea Institute of Ocean Science and Technology) ;
  • Jho, Myeong Hwan (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Ryu, Kyong Ho (Department of Civil and Environmental Engineering, Hanyang University)
  • 윤성범 (한양대학교 건설환경공학과) ;
  • 정원무 (한국해양과학기술원 해양ICT융합연구센터) ;
  • 조명환 (한양대학교 대학원 건설환경공학과) ;
  • 류경호 (한양대학교 대학원 건설환경공학과)
  • Received : 2020.09.15
  • Accepted : 2020.10.14
  • Published : 2020.10.31

Abstract

Numerical simulations of the storm surge and waves induced by the Typhoon Maemi incident on the south sea of Korea in 2003 are performed using the JMA-MSM forecast weather field, NCEP-CFSR reanalysis weather field, ECMWF-ERA5 reanalysis weather field, and the pressure and wind fields obtained using the best track information provided by JTWC. The calculated surge heights are compared with the time history observed at harbours along the coasts of Korea. For the waves occurring coincidentally with the storm surges the calculated significant wave heights are compared with the measured data. Based on the comparison of surge and wave heights the assessment of the reliability of various weather fields is performed. As a result the JMA-MSM weather fields gives the highest reliability, and the weather field obtained using JTWC best track information gives also relatively good agreement. The ECMWF-ERA5 gives in general surge and wave heights weaker than the measured. The reliability of NCEP-CFSR turns out to be the worst for this special case of Typhoon Maemi. Based on the results of this study it is found that the reliable weather fields are essential for the accurate simulation of storm surges and waves.

2003년 남해안에 내습한 태풍 매미에 의해 발생한 폭풍해일과 파랑을 JMA-MSM 예보기상자료, NCEP-CFSR 재분석 기상자료, ECMWF-ERA5 재분석 기상자료, JTWC의 최적경로를 이용한 기상자료를 이용하여 수치모의하고, 계산된 해일고를 전국 해안의 항만에서 관측된 폭풍해일 시계열 자료와 비교하였다. 폭풍해일과 동시에 발생하는 파랑에 대해서는 계산된 유의파고를 관측 자료와 비교하였다. 이 비교를 통해 태풍 매미에 대한 각종 기상장의 신뢰도를 평가하였다. 그 결과 JMA-MSM 기상자료가 가장 신뢰도가 높았고, JTWC의 최적경로를 이용한 기상자료도 상당히 우수하게 나타났다. ECMWF-ERA5 기상자료는 전반적으로 해일고나 파고의 크기가 작게 나타났으며, NCEP-CFSR 기상자료는 태풍 매미의 특정 경우에 대해 신뢰도가 가장 낮게 나타났다. 이 연구를 통하여 폭풍해일과 파랑을 추산하기 위해 신뢰도 높은 기상장이 필수적임을 알 수 있었다.

Keywords

References

  1. Akbar, M., Kanjanda, S. and Musinguzi, A. (2017). Effect of bottom friction, wind drag coefficient, and meteorological forcing in hindcast of Hurricane Rita storm surge using SWAN + ADCIRC model. J. Mar. Sci. Eng., 5(38), doi:10.3390/jmse5030038.
  2. Booij, N., Ris, R.C. and Holthuijsen, L.H. (1999). A third-generation wave model for coastal regions, Part I, Model description and validation. J. Geophys. Res., 104(C4) 7649-7666. https://doi.org/10.1029/98JC02622
  3. Hasselmann, K. (1968). Weak-interaction theory of ocean waves. Basic Developments in Fluid Dynamics, ed. Holt, M., New York, Academic Press, 2, 117-182.
  4. Hersbach, H. and Coauthors (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146, 1999-2049. https://doi.org/10.1002/qj.3803
  5. Jeong, W.M. (2017). Private communication.
  6. Jeong, W.M., Ryu, K.H., Oh, S.H. and Baek, W.D. (2016). Trends of the storm wave appearance on the east coast analyzed by using long-term wave observation data. J. of Korean Society of Coastal and Ocean Engineers, 28(2), 109-115 (in Korean). https://doi.org/10.9765/KSCOE.2016.28.2.109
  7. Kim, K.-M., Kim, J.-H., Ryu, H.-S. and Jeong, W.-M. (2007). Calculation of the wave height distribution in the vicinity of Ulsan waters using the observed data of Typhoon Maemi. J. of Korean Navigation and Port Research, 31(6), 479-484 (in Korean). https://doi.org/10.5394/KINPR.2007.31.6.479
  8. Komen, G.J., Hasselmann, S. and Hasselmann, K. (1984). On the existence of a fully developed wind sea spectrum. J. Phys. Oceanogr., 14, 1271-1285. https://doi.org/10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2
  9. Korea Hydrographic and Oceanographic Agency (2012). Oceanic abnormal phenomena report, Vol.2 (in Korean).
  10. Korea Meteorological Administration (2011). Typhoon white book (in Korean).
  11. Korea Ocean Research and Development Institution (2005). Report on the estimation of deep-water design wave in Korea II (in Korean).
  12. Luettich, R., Westerink, J. and Scheffner, N. (1992). ADCIRC: An advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 1. Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. Vicksburg MS: Coastal Engineering Research Center.
  13. Luettich, R., Westerink, J. and Scheffner, N. (1994). ADCIRC: An advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 2. User's manual for ADCIRC-2DDI. Vicksburg MS: Coastal Engineering Research Center.
  14. Ministry of Oceans and Fisheries (2019). Report on the estimation of deep water design waves of Korea. 117-149 (in Korean).
  15. Mun, J., Lee, H.W., Jeon, W. and Lee, S.-H. (2017). Impact of meteorological initial input data on WRF simulation - Comparison of ERA-interim and FNL data. J. of Environmental Science International. 26(12), 1307-1319 (in Korean). https://doi.org/10.5322/JESI.2017.26.12.1307
  16. Qiao, W., Song, J., He, H. and Li, F. (2019) Application of different wind field models and wave boundary layer model to typhoon waves numerical simulation in WAVEWATCH III model. Tellus A: Dynamic Meteorology and Oceanography, 71(1), 1657552, DOI:10.1080/16000870.2019.1657552.
  17. Saha, S. and Coauthors (2010). The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 1015-1057. doi: 10.1175/2010BAMS3001.1
  18. Saha, S. and Coauthors (2014). The NCEP Climate Forecast System Version 2. J. of Climate, 27(6), 2185-2208. https://doi.org/10.1175/JCLI-D-12-00823.1
  19. Saito, K. and Coauthors (2006). The operational JMA nonhydrostatic meso-scale model. Monthly Weather Review, 134, 1266-1298. https://doi.org/10.1175/MWR3120.1
  20. Suh, S.W. and Kim, H.J. (2012). Typhoon surge simulation on the west coast incorporating asymmetric vortex and wave model on a fine finite element grid. Journal of Korean Society of Coastal and Ocean Engineers, 24(3), 166-178 (in Korean). https://doi.org/10.9765/KSCOE.2012.24.3.166
  21. SWAN team (2016). SWAN User manual (SWAN Cycle III version 41.10A). Delft University of Technology, 12-20.
  22. Tolman, H.L. (1997). A new global wave forecast system at NCEP. Ocean Wave Measurements and Analysis, Vol. 2, Edge, B.L. and Helmsley, J.M., Eds., ASCE, 777-786.
  23. WAMDI group (1988). The WAM model - a third generation ocean wave prediction model. J. Phys. Oceanogr., 18, 1775-1810. https://doi.org/10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2
  24. Wang, Z., Gong, Y., Cui, J., Dong, S. and Wu, K. (2019). Effect of the drag coefficient on a typhoon wave model. Journal of Oceanology and Limnology, 37(6), 1795-1804. https://doi.org/10.1007/s00343-019-8228-4
  25. WAVEWATCH III development group (2016). User manual and system documentation of WAVEWATCH III version 4.18. MMAB Technical Note 316.