• Title/Summary/Keyword: typhoon Maemi

Search Result 135, Processing Time 0.023 seconds

Analysis on Rainfall and Geographical Characteristics of Landslides in Gyeongnam Province (경남지역 산사태 발생지의 강우 및 지형특성분석)

  • Kim, Ki Heung;Jung, Hea Reyn;Park, Jae Hyeon;Ma, Ho Seop
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.2
    • /
    • pp.33-45
    • /
    • 2011
  • The purpose of this study to analyze landslide-triggering factors using the 38 landslide cases occurred by typhoon, Rusa in 2002, Maemi in 2003 and Ewiniar in 2006 and geospatial characteristics in Hamyang and Geochang County. where two day's heavy rainfall was concentrated on. The rainfalls factors to trigger landslides were accumulative rainfall (>230mm) and rainfall intensity(>30-75mm). The highest landslide frequency was concentrated on the areas of 400-900m in height and on the slopes of $25-40^{\circ}$ in degree. The frequency of landslide was high exceedingly above 80% of a slope attitude, while the frequency is very low below 70%. Granite was more susceptible as much as 9 times than metamorphic rocks. In areas mixed soil with gravels and rock blocks, the frequency of landslide was 73%.

A study on improvement of wind-resistance characteristics of the structure supporting road sign (도로표지판 지지구조물의 내풍성능 향상에 관한 연구)

  • Son, Yong-Chun;Park, Su-Yeong;Im, Jong-Guk;Sin, Min-Cheol
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.485-488
    • /
    • 2008
  • The structure supporting road sign is a road information facility for ensuring the safe transportation and smooth traffic. But, lots of road information facilities were damaged by the typhoon "Maemi" in 2003. Such damaged facilities should be rehabilitated and could increase economic loss by causing traffic accident. Therefore, in this study, behavior that reduce wind load and improve wind resistance of the structure supporting road sign are studied about wind load beyond design specification by abnormal climate as below. The first is wind load reducing technique such that shear key resist wind load that is not greater than design wind speed but in case that it is over the design wind limit, column member is rotated on the inner steel pipe axis by the brittle failure of shear key. The second is the technique such that fail-safe the overturning of road sign panel by equipment installation in the vertical member. The third is the technique of installing stiffening plate inside the vertical member to relieve stress concentration.

  • PDF

Development of the Self-Build based Emergency Towers for Overhead Transmission Line (송전선로 비상복구용 자주조립식 철주 개발)

  • Byun Gang;Min Byeong Wook;Wi Hwa Bog;Park Jae Ung;Baek Soo Gon
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.494-496
    • /
    • 2004
  • Due to a typhoon named MAEMI on Sep12, 2004, 7 transmission towers collapsed and 3 were damaged in the Gyeongnam and Busan areas. These caused long-term black-outs in Goeje-do. When a transmission tower collapses or is damaged, Construction will take more than 2 months and this will be accompanied by long-term black-outs. Therefore a temporary iron pole is used in such emergencies. Current temporary rehabilitation angle steel iron Pole consistes of around 800 members, 2,800 bolts and it takes about 5 days to construct a temporary transmission line. Consiquently wide black-outs occur during the construction of the temporary transmission line. To reduce black-out time, the construction period must be reduced as much as possible. This paper presents new methods to reduce temporary transmission line construction time to within 48 hours by applying a self-reliance assembling method instead of the current man power assembling method and by modulizing each angle steel with duralumin.

  • PDF

A Study on the Prediction Function of Wind Damage in Coastal Areas in Korea (국내 해안지역의 풍랑피해 예측함수에 관한 연구)

  • Sim, Sang-bo;Kim, Yoon-ku;Choo, Yeon-moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.69-75
    • /
    • 2019
  • The frequency of natural disasters and the scale of damage are increasing due to the abnormal weather phenomenon that occurs worldwide. Especially, damage caused by natural disasters in coastal areas around the world such as Earthquake in Japan, Hurricane Katrina in the United States, and Typhoon Maemi in Korea are huge. If we can predict the damage scale in response to disasters, we can respond quickly and reduce damage. In this study, we developed damage prediction functions for Wind waves caused by sea breezes and waves during various natural disasters. The disaster report (1991 ~ 2017) has collected the history of storm and typhoon damage in coastal areas in Korea, and the amount of damage has been converted as of 2017 to reflect inflation. In addition, data on marine weather factors were collected in the event of storm and typhoon damage. Regression analysis was performed through collected data, Finally, predictive function of the sea turbulent damage by the sea area in 74 regions of the country were developed. It is deemed that preliminary damage prediction can be possible through the wind damage prediction function developed and is expected to be utilized to improve laws and systems related to disaster statistics.

Climatological Boundary and Characteristics of Coastal Zone over the Southwestern Korean peninsula (한반도 남서해안의 기후학적 연안지대의 경계와 특징)

  • 이영선;하경자;전은희
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.3
    • /
    • pp.137-152
    • /
    • 2004
  • The climatological characteristics of coastal zone over the southwestern coast of Korea peninsula were investigated using the data observed by AWS (automatic weather system) and 4 buoy points. Coastal zone is climatologically defined as the region bounded by the distinct contrast of temperature gradient and wind speed across coastline. In the southwest of peninsula four cross-lines consisted of AWS aligned with each buoy were selected as Geojedo buoy line, Geomundo buoy line, Chilbaldo buoy line and Dukjukdo buoy line. Analysis on the diurnal cycle and intra-month variation, monthly mean and maximum value, the temperature gradient with distance between buoy and each station and the accumulative frequency of wind speed were applied to find out the characteristics and the range of coast zone. The maximum ranges of coastal zone vary from offshore to Sanglim (about 34 km distance from coastline) for Geojedo buoy line, to Sunchun (about 52 km) for Geo-mundo buoy line, to Jaeundo (about 27 km) for chilbaldo buoy line and to Yongin (about 65 km) for Dukjukdo buoy line. The modification of coastal zone according to synoptic flow was investigated for the onshore, off-shore and calm cases. The ranges of coastal zone are significantly changed with the distance between 65∼90 km for the case of onshore. In addition, we tried to find out the variation of the wind and temperature and the wind ratio of wind speed at ocean to land stations along Geojedo buoy line during 12∼13 Sep. 2003 affected by typhoon (MAEMI).

Analysis of Harbor Responses due to the Dredging Work at Waterway and Mooring Basin in Busan New Port (부산 신항만에서 수로 및 박지 준설에 따른 항만정온도의 변화 분석)

  • Lee Joong-Woo;Lee Hak-Seung;Lee Hoon;Yang Sang-Yong
    • Journal of Navigation and Port Research
    • /
    • v.30 no.1 s.107
    • /
    • pp.97-104
    • /
    • 2006
  • Recently the first stage qf construction for Busan new port emerged over the sea surface at the north container terminal site. With this, there are lot of discussions and debates on increasing the water depth at the approaching channel and mooring basin from the existing 15m to 18m by dredging work in order to be able to serve 12,000TEU containership, and at the same time, correction to the reclamation plan of hinterland at the part of Undong Bay qf the new port site. Since the attack of typhoon 'Maemi' in 2003, it is expected that the design wave parameters for coastal and harbor structures in this area would be somewhat changed and so the extreme wave condition at each terminal and tranquility of berthing area does, and therefore, it is necessary to analyze the tranquility at each berth Hence in this study, we constructed a wave model for these conditions and performed simulation together with the circulation model simulation, compared with the field data collected The result showed the increase of the harbor response throughout the basin but not severe condition However, a certain location needs to be prepared for the rough sea condition when a severe typhoon hit the site.

Development for the function of Wind wave Damage Estimation at the Western Coastal Zone based on Disaster Statistics (재해통계기반 서해 연안지역의 풍랑피해예측함수 개발)

  • Choo, Tai Ho;Kwak, Kil Sin;Ahn, Si Hyung;Yang, Da Un;Son, Jong Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.14-22
    • /
    • 2017
  • The frequency and scale of natural disasters due to the abnormal climate phenomena caused by global warming have being increasing all over the world. Various natural disasters, such as typhoons, earthquakes, floods, heavy rain, drought, sweltering heat, wind waves, tsunamis and so on, can cause damage to human life. Especially, the damage caused by natural disasters such as the Earthquake of Japan, hurricane Katrina in the United States, typhoon Maemi and so on, have been enormous. At this stage, it is difficult to estimate the scale of damage due to (future) natural disasters and cope with them. However, if we could predict the scale of damage at the disaster response level, the damage could be reduced by responding to them promptly. In the present study, therefore, among the many types of natural disaster, we developed a function to estimate the damage due to wind waves caused by sea winds and waves. We collected the damage records from the Disaster Report ('91~'14) published by the Ministry of Public Safety and Security about wind waves and typhoons in the western coastal zone and, in order to reflect the inflation rate, we converted the amount of damage each year into the equivalent amount in 2014. Finally, the meteorological data, such as the wave height, wind speed, tide level, wave direction, wave period and so on, were collected from the KMA (Korea Meteorological Administration) and KHOA (Korea Hydrographic and Oceanographic Agency)'s web sites, for the periods when wind wave and typhoon damage occurred. After that, the function used to estimate the wind wave damage was developed by reflecting the regional characteristics for the 9 areas of the western coastal zone.

Applicability Evaluation of Flood Inundation Analysis using Quadtree Grid-based Model (쿼드트리 격자기반 모형의 홍수범람해석 적용성 평가)

  • Lee, Dae Eop;An, Hyun Uk;Lee, Gi Ha;Jung, Kwan Sue
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.6
    • /
    • pp.655-666
    • /
    • 2013
  • Lately, intensity and frequency of natural disasters such as flood are increasing because of abnormal climate. Casualties and property damages due to large-scale floods such as Typhoon Rusa in 2002 and Typhoon Maemi in 2003 rapidly increased, and these show the limits of the existing disaster prevention measures and flood forecasting systems regarding irregular climate changes. In order to efficiently respond to extraordinary flood, it is important to provide effective countermeasures through an inundation model that can accurately simulate flood inundation patterns. However, the existing flood inundation analysis model has problems such as excessive take of analysis time and accuracy of the analyzed results. Therefore, this study conducted a flood inundation analysis by using the Gerris flow solver that uses quadtree grid, targeting the Baeksan Levee in the Nakdong River Basin that collapsed because of a concentrated torrential rainfall in August, 2002. Through comparisons with the FLUMEN model that uses unstructured grid among the existing flood inundation models and the actual flooded areas, it determined the applicability and efficiency of the quadtree grid-based flood inundation model of the Gerris flow solver.

Analysis of Harbor Responses due to the Dredging Work at Waterway and Mooring Basin in Busan New Port (부산 신항만에서 수로 및 박지 준설에 따른 항만정온도의 변화 분석)

  • Lee Joong-Woo;Lee Hak-Seung;Lee Hoon;Yang Sang-Yong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.117-124
    • /
    • 2005
  • Recently the first stage of construction for Busan new port emerged over the sea surface at the north container terminal site. With this, there are lot of discussions and debates on increasing the water depth at the approaching channel and mooring basin from the existing 15m to 18m by dredging work in order to be able to serve 12,000TEU containership, and at the same time, correction to the reclamation plan of hinterland at the part of Undong Bay of the new port site. Since the attack of typhoon 'Maemi' in 2003, it is expected that the design wave parameters for coastal and harbor structures in this area would be somewhat changed and so the extreme wave condition at each terminal and tranquility of berthing area does, and therefore, it is necessary to analyze the tranquility at each berth. Hence in this study, we constructed a wave model for these conditions and performed simulation together with the circulation model simulation, compared with the field data collected. The result showed the increase of the harbor response throughout the basin but not severe condition. However, a certain location needs to be prepared for the rough sea condition when a severe typhoon hit the site.

  • PDF

A Study for the Evaluation of the Force by the Wind on the Ship at Anchoring (실선계측을 통한 묘박중인 선박의 풍압력 적용에 관한 연구)

  • Jung, Chang-Hyun;Kong, Gil-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.3
    • /
    • pp.223-228
    • /
    • 2009
  • By the typhoon "MAEMI" in 2003, a lot of marine accidents such as stranding, collision etc. occurred to the vessels at anchor in "JINHAE MAN" which was considered one of the most safe sheltering anchorage in Korea. These accidents resulted from the dragging of anchor by the strong winds. It needs to compare the external forces with the holding powers of anchors to estimate if the anchor will be dragged or not. However, the calculation of the force by the wind on the ship, in particular, on the wind pressure area which changes by the swinging of her bow is not yet set on a thesis. Therefore, this paper verified that how many times the front wind pressure area should be applied to calculate the force by the wind on the ship at anchor by comparing and analyzing the numerical calculation with, the actual ship's data which was really dragged by the strong wind.

  • PDF