• Title/Summary/Keyword: types of estimation in measurement

Search Result 102, Processing Time 0.031 seconds

Control of Automatic Pipe Cutting Robot with Magnet Binder Using Learning Controller (반복학습제어기를 이용한 자석식 자동 파이프 절단 로봇의 제어)

  • Lee Sung-Whan;Kim Gook-Hwan;Rhim Sung-Soo;Lee Soon-Geul
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.541-546
    • /
    • 2005
  • Tracking control of an automatic pipe cutting robot (APCROMB) is studied. Using magnetic force APCROMB, which is designed and developed in Kyung Hee University, binds itself to the pipe and executes unmanned cutting process. The gravity effect on the movement of APCROMB varies as it rotates around the cylindrical pipe laid in the gravitational field. To maintain a constant velocity and consistent cutting performance against the varying gravitational effect, the authors adopt a multi-rate repetitive learning controller (MRLC), which learns the required effort to cancel the repetitive tracking errors caused by nonlinear effect. In addition to the varying gravity effect other types of nonlinear disturbances including backlash in the driving system and the slip between the wheels of APCROMB and the pipe also cause degradation in the cutting process. In order to identify those nonlinear disturbances the position estimation based on the encoder attached at the motor is not good enough. To identify the absolute angular position of APCROMB the authors propose the angular position estimation based on the signals from a MEMS-type two-axis accelerometer mounted on APCROMB. The tracking performances of APCROMB with a MRLC using the encoder-based position estimation is experimentally measured and results are shown. Also the difference between the encoder-based angular displacement measurement and the accelerometerbased angular displacement measurement is included.

  • PDF

Remaining service life estimation of reinforced concrete buildings based on fuzzy approach

  • Cho, Hae-Chang;Lee, Deuck Hang;Ju, Hyunjin;Kim, Kang Su;Kim, Ki-Hyun;Monteiro, Paulo J.M.
    • Computers and Concrete
    • /
    • v.15 no.6
    • /
    • pp.879-902
    • /
    • 2015
  • The remaining service life (RSL) of buildings has been an important issue in the field of building and facility management, and its development is also one of the essential factors for achieving sustainable infrastructure. Since the estimation of RSL of buildings is heavily affected by the subjectivity of individual inspector or engineer, much effort has been placed in the development of a rational method that can estimate the RSL of existing buildings more quantitatively using objective measurement indices. Various uncertain factors contribute to the deterioration of the structural performance of buildings, and most of the common building structures are constructed not with a single structural member but with various types of structural components (e.g., beams, slabs, and columns) in multistory floors. Most existing RSL estimation methods, however, consider only an individual factor. In this study, an estimation method for RSL of concrete buildings is presented by utilizing a fuzzy theory to consider the effects of multiple influencing factors on the deterioration of durability (e.g., concrete carbonation, chloride attack, sulfate attack), as well as the current structural condition (or damage level) of buildings.

Estimation of Soil Volume Conversion Factors using Nondestructive Testing Methods (비파괴시험기법을 이용한 토량환산계수 산정 방법 제시)

  • Son, Thai An;Ryu, Hee-Hwan;Cho, Gye-Chun;Hong, Eun-Soo;Jin, Gyu-Nam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.717-721
    • /
    • 2010
  • Soil volume conversion factors are used for estimation of an excavated the soil volume which will be removed or added in levelling the ground surface of a construction site. An accurate evaluation method will help us reduce a construction cost and time consuming. In this study, we performed the laboratory tests, including grain size measurement, water content, specific gravity, porosity, density and XRD tests, to suggest reliable soil volume conversion factors and weathering indices in field using nondestructive methods. The weathering index and soil volume conversion factor L are obtained for different types of soils. At results, the CIW index is the best method measuring the weathering index and the factor L is relative to natural porosity, void ratio, density and dry density.

  • PDF

An Improved Method for Fault Location based on Traveling Wave and Wavelet Transform in Overhead Transmission Lines

  • Kim, Sung-Duck
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.51-60
    • /
    • 2012
  • An improved method for detecting fault distance in overhead transmission lines is described in this paper. Based on single-ended measurement, propagation theory of traveling waves together with the wavelet transform technique is used. In estimating fault location, a simple, but fundamental method using the time difference between the two consecutive peaks of transient signals is considered; however, a new method to enhance measurement sensitivity and its accuracy is sought. The algorithm is developed based on the lattice diagram for traveling waves. Representing both the ground mode and alpha mode of traveling waves, in a lattice diagram, several relationships to enhance recognition rate or estimation accuracy for fault location can be found. For various cases with fault types, fault locations, and fault inception angles, fault resistances are examined using the proposed algorithm on a typical transmission line configuration. As a result, it is shown that the proposed system can be used effectively to detect fault distance.

Application of Ray Acoustics in Outdoor Noise Propagation : NIC@E (도로소음의 예측모델에 대한 비교$\cdot$평가)

  • 이규철;김정태
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1131-1136
    • /
    • 1999
  • NIC@E is the software developed by authors. The program provides the noise level in outdoors due to various noise source types : construction machines including blast sources, railroad vehicles and automobiles. It operates in the Windows system. In this paper, a highway traffic noise has been evaluated using various types of approach : Ray-tracing method, NIRI method, JAS method. In order to compare the noise estimation performance for various models, a measurement is conducted on a 8 lane express highway at the distance of 25 m and 50 m from the lane. The result shows that the ray tracing and JAS model predict the measured value well within 2dB deviaton. The NIRI model, however, underestimates the highway noise level, as the distance between the source and receiver increases.

  • PDF

Trajectory Estimation of Center of Plantar Foot Pressure Using Gaussian Process Regression (가우시안 프로세스 회귀를 이용한 족저압 중심 궤적 추정)

  • Choi, Yuna;Lee, Daehun;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.296-302
    • /
    • 2022
  • This paper proposes a center of plantar foot pressure (CoP) trajectory estimation method based on Gaussian process regression, with the aim to show robust results regardless of the regions and numbers of FSRs of the insole sensor. This method can bring an interpolation between the measurement points inside the wearable insole sensor, and two experiments are conducted for performance evaluation. For this purpose, the input data used in the experiment are generated in three types (13 FSRs, 8 FSRs, 5 FSRs) according to the regions and numbers of FSRs. First, the estimation results of the CoP trajectory are compared using Gaussian process regression and weighted mean. As a result of each method, the estimation results of the two methods were similar in the case of 13 FSRs data. On the other hand, in the case of the 8 and 5 FSRs data, the weighted mean varies depending on the regions and numbers of FSRs, but the estimation results of Gaussian process regression showed similar results in spite of reducing the regions and numbers. Second, the estimation results of the CoP trajectory based on Gaussian process regression during several gait cycles are analyzed. In five gait cycles, the previous cycle and the current estimation results are compared, and it was confirmed that similar trajectories appeared in all. In this way, the method of estimating the CoP trajectory based on Gaussian process regression showed robust results, and stability was confirmed by yielding similar results in several gait cycles.

Development of Displacement Estimation Technique for Bridges Located under Poor Measurement Circumstances (계측이 어려운 환경에 가설된 교량의 변위 추정 기술 개발)

  • Jeon, Junchang;Lee, Heehyun
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.755-764
    • /
    • 2016
  • In this paper, to verify the field application of a displacement estimation technique based on the relationship between displacement and strain, static and dynamic field load test are performed on three-span continuous real bridge structures. The superstructure types of the test bridges are IPC girder highway bridge and steel box girder AGT bridge. LVDTs and strain gauges are attached to them; then, the responses due to test vehicle are measured. To obtain the displacement-strain relationship of the test bridges, the bridges are modeled as grillage system with 6 DOFs for the purpose of structural analyses. Static and dynamic displacements, which are estimated using both the calculated displacement-strain relationship and the measured strain signal, agree well with the values measured by LVDT. This study demonstrates that the displacement estimation technique using the strain signal can be effectively applied to the displacement measurement of bridge structures that cross rivers/roads/railways or have high clearance.

A study on the sequential algorithm for simultaneous estimation of TDOA and FDOA (TDOA/FDOA 동시 추정을 위한 순차적 알고리즘에 관한 연구)

  • 김창성;김중규
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.7
    • /
    • pp.72-85
    • /
    • 1998
  • In this paper, we propose a new method that sequentially estimates TDOA(Time Delay Of Arrival) and FDOA(Frequency Delay Of Arrival) for extracting the information about the bearing and relative velocity of a target in passive radar or sonar arrays. The objective is to efficiently estimate the TDOA and FDOA between two sensor signal measurements, corrupted by correlated Gaussian noise sources in an unknown way. The proposed method utilizes the one dimensional slice function of the third order cumulants between the two sensor measurements, by which the effect of correlated Gaussian measurement noises can be significantly suppressed for the estimation of TDOA. Because the proposed sequential algoritjhm uses the one dimensional complex ambiguity function based on the TDOA estimate from the first step, the amount of computations needed for accurate estimationof FDOA can be dramatically reduced, especially for the cases where high frequency resolution is required. It is demonstrated that the proposed algorithm outperforms existing TDOA/FDOA estimation algorithms based on the ML(maximum likelihood) criterionandthe complex ambiguity function of the third order cumulant as well, in the MSE(mean squared error) sense and computational burden. Various numerical resutls on the detection probability, MSE and the floatingpoint computational burden are presented via Monte-Carlo simulations for different types of noises, different lengths of data, and different signal-to-noise ratios.

  • PDF

Evaluating MRV Potentials based on Satellite Image in UN-REDD Opportunity Cost Estimation: A Case Study for Mt. Geum-gang of North Korea (UN-REDD 기회비용 산정에서 위성영상 기반의 MRV 여건평가: 금강산을 사례로)

  • Joo, Seung-Min;Um, Jung-Sup
    • Spatial Information Research
    • /
    • v.22 no.3
    • /
    • pp.47-58
    • /
    • 2014
  • The credible measurement, reporting and verification (MRV) is among the most critical elements in UN-REDD (United Nations programme on Reducing Emissions from Deforestation and forest Degradation in Developing Countries). This study is intended to explore MRV potential in terms of UN-REDD opportunity cost estimation using satellite image for Mt. Geum-gang of North Korea. A visual interpretation were conducted to evaluate MRV conditions by sub-dividing or decomposing the images with different pixel size into a three types of hierarchical tree structure that helps dealing with spatial variability within each subarea. The permanent record of standard satellite remote sensing system demonstrated its capability of presenting area-wide visual evidences of MRV conditions in Mt. Geum-gang (such as the identification of forested area, degradation trends for forest space, three types of hierarchical land-cover and land use tree structure, carbon density in the landscape). Satellite data could be accepted as legally binding proof when it comes to REDD opportunity cost estimation since several cases exist where remote sensing has been used as legal evidence in ICJ (International Court of Justice) and UN resolution. It doesn't seem very difficult to comply with MRV requirements for UN-REDD opportunity cost calculation due to the probative value of satellite data. It is anticipated that this research output could be used as a valuable reference for Korea-based enterprises exploring REDD project sites and the carbon traders to ensure MRV potentials using satellite image in UN-REDD Opportunity Cost estimation.

Characteristics of Measurement Errors due to Reflective Sheet Targets - Surveying for Sejong VLBI IVP Estimation (반사 타겟의 관측 오차 특성 분석 - 세종 VLBI IVP 결합 측량)

  • Hong, Chang-Ki;Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.4
    • /
    • pp.325-332
    • /
    • 2022
  • Determination of VLBI IVP (Very Long Baseline Interferometry Invariant Point) position with high accuracy is required to compute local tie vectors between the space geodetic techniques. In general, reflective targets are attached on VLBI antenna and slant distances, horizontal and vertical angles are measured from the pillars. Then, adjustment computation is performed by using the mathematical model which connects measurements and unknown parameters. This indicates that the accuracy of the estimated solutions is affected by the accuracy of the measurements. One of issues in local tie surveying, however, is that the reflective targets are not in favorable condition, that is, the reflective sheet target cannot be perfectly aligned to the instrument perpendicularly. Deviation from the line of sight of an instrument may cause different type of measurement errors. This inherent limitation may lead to incorrect stochastic modeling for the measurements in adjustment computation procedures. In this study, error characteristics by measurement types and pillars are analyzed, respectively. The analysis on the studentized residuals is performed after adjustment computation. The normality of the residuals is tested and then equal variance test between the measurement types are performed. The results show that there are differences in variance according to the measurement types. Differences in variance between distances and angle measurements are observed when F-test is performed for the measurements from each pillar. Therefore, more detailed stochastic modeling is required for optimal solutions, especially in local tie survey.