• Title/Summary/Keyword: type V cement

Search Result 68, Processing Time 0.022 seconds

Corrosion of Steel in Concrete Deteriorated by Freezing/Thawing and Carbonation (동결융해 및 중성화를 받은 콘크리트의 철근 부식 특성)

  • 정해문;김종우;이대근;최광일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.293-298
    • /
    • 1997
  • Corrosion of steel reinforcing in concrete deteriorated by freezing/thawing and carbonation was characterized. Concrete specimens were prepared using various kinds of cements such as ordinary portland cement (type I), low heat portland cement (type IV, belite rich cement), sulphate resistance portland cement (type V), blast furnace slag portland cement and ternary blended cement. Of various cements, type V and type IV with lower $C_3A$ content revealed better steel corrosion resistance after freezing/thawing and carbonation. $C_3A$ content in cement might affect freezing/thawing resistance in sea water.

  • PDF

Analysis of Correlation between Compressive Strength, Void Ratio and Chloride Diffusion Coefficient of Concrete Using Various Kinds of Cement (시멘트의 종류별 콘크리트외 강도 및 공극률과 염화물 확산계수의 상관관계 분석)

  • Yoon Eui-Sik;Lee Taek-Woo;Park Seung-Bum
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.735-742
    • /
    • 2005
  • The purpose of this study was to evaluate the salt water resistance of concrete depending on various types of cement. In this regard, 5 types of concrete were selected and their strength, void ratio and chloride ion diffusion characteristics were tested, and mutual correlation were analyzed. From the test results, the compressive strength and void ratio of concrete which using Type V cement was as good as Type I cement at long-term ages but the chloride diffusion coefficient of Type V cement was larger than Type I cement. And the concrete replacing some portion of the Type I cement with fly ash was superior in the cases of compressive strength, void ratio and the resistance of chloride ion permeation compared to the Type I cement with the lapse of ages. On the other hand, the compressive strength, the void ratio and the chloride diffusion coefficient of the concrete all indicated high levels of the correlation coefficient and the coefficient of determination regardless of the type of cement.

The Estimation of Emission Factor of N2O and CH4 by Measurement from Stacks in the Waste Incinerators and Cement Production Plants

  • Choi, Sang-Min;Im, Jong-Kwon;Hong, Ji-Hyoung;Lee, Sue-Been;Zoh, Kyung-Duk
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.3
    • /
    • pp.217-226
    • /
    • 2007
  • The purpose of this study is to estimate the emission factor of $non-CO_2$ global warming gases such as $N_2O$ and $CH_4$ by measuring concentrations from stacks of waste incinerators and cement production plants. Based on the established monitoring methods, $N_2O$ concentration measured from stacks in incinerator were between 0.62 and $40.60\;ppm_v$ (ave. $11.50\;ppm_v$). The concentration of $N_2O$ was dependent on the incinerator types. However, the concentrations of $CH_4$ gas were between 2.65 and $5.68\;ppm_v$ (ave. $4.22\;ppm_v$), and did not show the dependency on the incinerator types. In the cement production plant, the concentration ranges of $N_2O$ from the stack were from 6.90 to $10.80\;ppm_v$ (ave. $8.60\;ppm_v$), and $CH_4$ were between 1.80 and $2.20\;ppm_v$ (ave. $2.60\;ppm_v$). Using measured concentrations, the emission amounts of $N_2O$ and $CH_4$ from stacks per year were calculated. The results were is 4.2 ton $N_2O/yr$ in the incinerators, and 53.7 ton $N_2O/yr$ in the cement facilities. The big difference is from the flow rate of flue gas in the cement facilities compared to the incinerators. By the same reason, the $CH_4$ emission amounts in cement plant and incinerator was found to be 339 ton $CO_2/yr$ and 34.1 ton $CO_2/yr$, respectively. Finally, the emission factor of $N_2O$ in the incinerators were calculated using the measured concentration and the amount of incinerated wastes, and was $42.5\sim799.1\;g/ton$ in kiln and stoker type, $11.9\sim79.9\;g/ton$ in stoker type, 90.1 ton/g in rotary kiln type, 174.9 g/ton in fluidized bed type, and 63.8 g/ton in grate type, respectively. Also, the emission factors of $CH_4$ were found to 65.2-91.3 g/ton in kiln/stoker type, 73.9-122 g/ton in stoker type, 109.5 g/ton rotary kiln, and 26.1 g/ton in fluidized bed type. This result indicates that the emission factor in incinerators is strongly dependent on the incinerator types, and matched with result of IPCC (International Panel on Climate Change) guideline.

Durability Evaluation of concrete using fly ash (플라이애시 혼입 콘크리트의 내구성 평가)

  • 조명석;송영철;류금성;고경택;김성욱;이장화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.755-760
    • /
    • 2002
  • The concrete structures in marine environment has been used type V cement(sulfate-resisting Portland cement), but according to the study results reported recently, the question has been raised for effect of the resistance to salt attack of the concrete using type V cement. It is increased the demands on the use of mineral admixtures such as fly ash, ground granulated blast-furnace slag instead of type V cement in order to improve the durability of concrete structures. Therefore, this study focused on the durability evaluation of concrete containing fly ash under marine environment, and the tests such as salt attack, carbonation, sulfate attack, and freezing-thawing were performed. Test results showed t]hat the resistance to salt attack, sulfate attack and freezing-thawing was improved, and the carbonation was in some disadvantage compared with normal concrete. Nevertheless, the durability of fly ash concrete would be maintained during the service life of structures.

  • PDF

The Application of Super-flowing Concrete Using Low Heat Cement (저발연 시멘트를 사용한 초유동 콘크리트의 물성)

  • 노재호;한정호;송용순;최이현;천재원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.649-656
    • /
    • 1997
  • The properties of super-flowing concrete with low heat cement were experimentally investigated and compared with ordinary 25-240-15 concrete with type Vcement. The cement content of super-flowing concrete with the low heat cement was 400 kg/$\textrm{m}^3$. However the hydration heat of super-flowing concrete is relatively lower than that ordinary concrete with type V cement. Also the ability to resist chloride ion penetration of super-flowing concrete with low heat cement is 5 times better than that of the ordinary concrete.

  • PDF

A Study on the Durability of Concrete made with Various Cements Containing Additive (시멘트 혼합재 첨가에 따른 콘크리트 내구 특성)

  • 김창범;조계흥;최재웅;김동석;박춘근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.687-692
    • /
    • 1998
  • This paper covers concrete durability made with portland cement type I and V, and granulated blast furnace slag blended cements 40 and 60%. Typical properties of cements and compressive strength development, drying shrinkage, carbonation, freezing and thawing properties of concretes were investigated. In addition, effects of CI penetration on various concretes with/without a freezing and thawing treatment were also studied. Portland cement type I and V were superior to the blended cement in the properties of compressive strength development, drying shrinkage, carbonation and freezing and thawing durability. In the respect of resistant of CI Blended cement showed better than the portland cement due to high permeability. But the blended cement with a freezing and thawing treatment presented a much decreased resistance of CI penetration.

  • PDF

Mechanical Properties of Concrete with Different Curing Temperature (양생온도변화에 따른 콘크리트의 재료역학적 특성)

  • 김진근;한상훈;양은익;조명석;우상균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.117-124
    • /
    • 1997
  • In this study, mechanical properties of type V cement concrete with different curing temperature were investigated. The tests for mechancial properties, i.e., compressive strength and modulus of elasticity, were carried out on two kinds of type V cement concrete mixes. concrete cylinders cured at 10, 23, 35 and 50℃ were tested at 1, 3, 7 and 8 days. The 'rate constant model' was used to described the combined effects of time and temperature on compressive strength development. Test results show that concrete subjected to high temperature at early age attains greater strength than concrete to low temperature but eventually attains lower later-age strength than that. With type V cement concrete, the linear and Arrhenius rate constant models both accurately describe the development of relative strength as afunction of the equivalent age.

  • PDF

Rheological Properties of Cement Using Admixtures (혼합재를 첨가한 시멘트의 레올로지 특성)

  • 양승규;이웅종;김동석;정연식;유재상;이종열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.271-276
    • /
    • 2003
  • This study is about the rheological properties of cement slurry using admixtures. The variables are the type of cement(Type I, II, IV, V) and the substitution ratio of admixtures such as fly ash and slag. As a result of measuring the fluidity of various types of cement slurry at the early stage, type 2, type 4 and type 5 showed the similar property. The fluidity of type 1 and ternary blended cement was low. it is thought that it is because of the high $C_3$A content. The cement slurries containing mineral admixtures were superior in the property of fluidity retention.

  • PDF

Mechanical Properties of Concrete with Different Curing Temperatures (양생온도변화에 따른 콘크리트의 재료역학적 특성)

  • 김진근;한상훈;양은익;송영철;방기성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.42-47
    • /
    • 1998
  • Experimental investigation was undertaken to determine early-age strength development and the relationships between the mechanical properties of type I, V and V/fly ash cement concrete with different curing temperature. The tests for mechanical properties, i.e., compressive strength, splitting tensile strength and modulus of elasticity were carried out for type, I, V and V with 15% replacement with fly ash cement concrete. For this purpose 480 concrete cylinders cured at isothermal conditions of 10, 23, 35 and 5$0^{\circ}C$ were tested at ages of 1, 3, 7 and 28days. According to the experiments, the concrete subjected to high temperature at early age got greater strength at early age, however eventually lower strength at late age. The derived relationships between compressive strength and splitting tensile strength and elastic modulus of elasticity appeared to be identical for all types of cement.

  • PDF

Effects of Cement Type and Fly Ash on the Sulfate Attack Using ASTM C 1012

  • Ahn Nam-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.130-138
    • /
    • 2004
  • The primary factors that affecting concrete sulfate resistance are the chemistry of the Portland cement and the chemistryandreplacementlevelofmineraladmixtures. In order to investigate the effect of those on the sulfate attack the testing program involved the testing of several different mortar mixes using the standardized test, ASTM C 1012. four different cements were evaluated including one Type I cement, two Type I-II cements, and one Type V cement. Mortar mixes were also made with mineral admixtures as each cement was combined with three different types of mineral admixtures. One Class F fly ash and one Class C fly ash was added in various percent volumetric replacement levels. The expansion measurements of mortar bars were taken and compared with expansion criteria recommended from past experience to investigate the effect of each factor.