• 제목/요약/키워드: tying model

검색결과 37건 처리시간 0.025초

Bayesian 기법의 모수 추정을 이용한 결정트리 상태 공유 모델링 (Decision Tree State Tying Modeling Using Parameter Estimation of Bayesian Method)

  • 오상엽
    • 디지털융복합연구
    • /
    • 제13권1호
    • /
    • pp.243-248
    • /
    • 2015
  • 인식 모델을 구성할 때 정의되지 않은 모델, 인식 모델 구성 후에 추가되어진 모델, 모델이 부족하여 하나의 모델 클러스터링으로 모델링하여 생성된 인식 모델들은 인식률 저하의 원인이 된다. 이러한 원인을 개선하기 위하여 Bayesian 기법의 모수 추정을 이용한 결정트리 상태 공유 모델링 방법을 제안하였다. 제안 방법은 Bayesian 기법의 파라미터 추정을 통하여 탐색된 결과로부터 결정트리 기반 상태 공유 모델링의 최대 확률 기법에 따라 인식모델을 결정한다. 본 논문에서 제안하여 시뮬레이션 데이터를 이용한 실험 결과에서 제안한 군집화 방식을 비교하여 1.29%의 음성인식 오류감소율을 보였으며, 기존 군집화 방식에 비해 개선된 성능을 보였다.

Optimal Decision Tree를 이용한 Unseen Model 추정방법 (Unseen Model Prediction using an Optimal Decision Tree)

  • 김성탁;김회린
    • 대한음성학회지:말소리
    • /
    • 제45호
    • /
    • pp.117-126
    • /
    • 2003
  • Decision tree-based state tying has been proposed in recent years as the most popular approach for clustering the states of context-dependent hidden Markov model-based speech recognition. The aims of state tying is to reduce the number of free parameters and predict state probability distributions of unseen models. But, when doing state tying, the size of a decision tree is very important for word independent recognition. In this paper, we try to construct optimized decision tree based on the average of feature vectors in state pool and the number of seen modes. We observed that the proposed optimal decision tree is effective in predicting the state probability distribution of unseen models.

  • PDF

이산분포 HMM을 이용한 음성인식에서의 코드워드 Tying 알고리즘 (A Codeword Tying Algorithm in Speech Recognition based on Discrete Hidden Markov Model)

  • 김도영;김남수;은종관
    • 한국음향학회지
    • /
    • 제13권3호
    • /
    • pp.63-70
    • /
    • 1994
  • 본 논문에서는 수형구조 분류기를 이 용한 코드워드 tying 알고리즘을 제안한다. 코드워드와 상태간의 통계적 특성을 이용한 일종의 soft decision 방식이라고도 볼 수 있는 제안된 알고리즘은 빠른 트리 구성과 유일한 최적의 해를 제공하는 특징이 있다. 또한, 이산분포 hidden Markov model(HMM)을 이용한 인식 시스템에 쉽게 적용이 가능하다는 장점을 가진다. 제안된 알고리즘의 성능 평가를 위한 화자독립 격리단어 인식실험에서 코드북 크기가 256과 512일 경우에 대해 각각 $6\%$, $9\%$의 오차를 감소시켰으며, HMM 파라미터도 $20\%$ 정도 줄임을 확인하였다.

  • PDF

결정트리기반 음성인식 시스템에서의 음소지속시간 사용방법 (A phoneme duration modeling in a speech recognition system based on decision tree state tying)

  • 구명완;김호경
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2002년도 11월 학술대회지
    • /
    • pp.197-200
    • /
    • 2002
  • In this paper, we propose a phoneme duration modeling in a speech recognition system based on disicion tree state tying. We assume that phone duration has a Gamma distribution. In a training mode, we model mean and variance of each state duration in context-independent phone model based on decision tree state tying. In a recognition mode, we get mean and variance of each context-dependent phone duration form state duration information obtaind during training mode. We make a comparative study of the proposed meth with conventinal methods. Our method results in good performance compared with conventional methods.

  • PDF

연속 어휘 인식 시스템에서 어휘 클러스터링 모델의 성능 지원을 위한 검색 시스템 (Retrieve System for Performance support of Vocabulary Clustering Model In Continuous Vocabulary Recognition System)

  • 오상엽
    • 디지털융복합연구
    • /
    • 제10권9호
    • /
    • pp.339-344
    • /
    • 2012
  • 기존의 연속 어휘 인식 시스템에서는 의사 결정 트리 기반 공유 모델링 방법을 사용하여 인식률 향상 시킬 수 있었으나 이들 음소 데이타에 대한 검색을 지원할 수 없는 문제로 인해 시스템 모델의 정확성을 확보하지 못한다는 단점이 있다. 이를 개선하기 위하여 연속 어휘 클러스터링 모델에서 음소 단위로 확률 모델을 검색할 수 있는 시스템을 모델링하였다. 본 논문에서 제안한 시스템을 적용한 결과 시스템 성능에서 95.88%의 인식률을 나타내었다.

혼합 가우시안 군집화를 이용한 상태공유 음향모델 최적화 (A Study on the Optimization of State Tying Acoustic Models using Mixture Gaussian Clustering)

  • 안태옥
    • 대한전자공학회논문지SP
    • /
    • 제42권6호
    • /
    • pp.167-176
    • /
    • 2005
  • 본 논문은 음성인식에 쓰이는 음향모델의 모델링 방법 중 결정트리 상태공유 모델링(DTST)을 기반으로 출력 확률 분포의 혼합 가우시안 수를 줄여 모델을 최적화하는 방법을 제안한다. DTST는 음성학적 지식을 포함할 수 있는 질의어 집합과 유사도를 기반으로 한 결정 방법을 이용하는 것이다. 이때 상태들의 출력 확률 분포의 혼합 가우시안 수를 늘려 인식률을 증가시킬 수 있게 된다. 본 논문에서는 인식률이 최대가 되는 지점에서 혼합 가우시안들을 군집화 하여 그 수를 줄이고자 한다. 군집화 시에 필요한 거리 측정 방법은 유클리드(Euclidean)와 바타챠랴(Bhattacharyya) 방법을 이용하였고, 새로운 가우시안은 거리가 최소가 되는 두 가우시안으로부터 평균과 분산을 다시 계산하여 생성하였다. 증권상장 회사명(STOCKNAME) 1,680개의 단어 데이터베이스를 구성하여 실험한 결과 바타챠랴 방법은 $97.2\%$의 인식률을 유지하면서 전체 혼합 가우시안 수의 비율을 $1.0\%$로 감소시켰고, 유클리드 방법은 $96.9\%$의 인식률을 유지하면서 혼합 가우시안 수의 비율을 $1.0\%$로 감소시켜 모델을 최적화할 수 있었다.

상태 공유와 결정트리 방법을 이용한 효율적인 문맥 종속 프로세스 모델링 (Efficient context dependent process modeling using state tying and decision tree-based method)

  • 안찬식;오상엽
    • 한국멀티미디어학회논문지
    • /
    • 제13권3호
    • /
    • pp.369-377
    • /
    • 2010
  • HMM(Hidden Markov Model)을 사용하는 어휘 인식 시스템에서 인식 시 훈련 중에 나타나지 않는 모델들로 인해 인식률의 저하를 가져오며 인식 대상 어휘가 변경되거나 추가되면 데이터베이스의 수집과 훈련 과정을 수행하여 모델을 재생성해야 하고 그에 따른 시간과 추가 비용이 초래된다. 본 논문에서는 결정 트리 방법과 모델 공유 방법을 사용하여 효율적인 문맥 종속 프로세스 모델링 방법을 제안하였다. 제안한 방법은 생성된 모델들로부터 모델 공유 방법을 이용하여 모델의 재생성 과정을 줄이고 강인하고 정확한 문맥 종속 음향 모델링을 제공한다. 또한, 모델의 수를 줄이고 훈련 중에 나타나지 않는 모델들에 대해 문맥 종속 유사 음소 모델을 제공하여 훈련 중에 나타나지 않는 모델의 문제점을 해결하고 훈련성을 확보하였다. 제안된 방법으로 6종류의 음성 데이터베이스를 이용하여 어휘 종속 인식과 어휘 독립 인식 실험을 수행한 결과 어휘 종속 인식 실험에서는 98.01%의 성능을 보였고, 어휘 독립 인식 실험에서 97.38%의 성능을 보였다.

공유모델 인식 성능 향상을 위한 효율적인 연속 어휘 군집화 모델링 (Efficient Continuous Vocabulary Clustering Modeling for Tying Model Recognition Performance Improvement)

  • 안찬식;오상엽
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권1호
    • /
    • pp.177-183
    • /
    • 2010
  • 연속 어휘 인식 시스템에서는 통계적 방법에 의한 어휘 인식을 수행하기 위하여 확률분포를 이용하며 이는 음소 단위의클러스터링을사용하여모델링하여샘플들을기반으로 확률 파라미터를 추정한다. 어휘 검색 시 추정된 확률 파라미터로부터 인식 결과를 나타내는데 미리 정의되지 않은 음소와 추가되어진 음소로부터 인식률이 저하되는 문제점이 발생하며, 하나의 클러스터링으로 모델링하므로 가우시안 모델이 정확성을 확보하지 못한다는 단점이 있다. 이를 개선하기 위하여 확률 분포의 혼합 가우시안 모델을 최적화하여 유사도를 기반으로 Euclidean과 Bhattacharyya 거리 측정 방법을 혼합한 군집화 모델을 제안하고, 군집화된 모델에서 음소 단위로 확률 모델을 탐색할 수 있는 시스템을 모델링하였다. 본 논문에서 제안한 시스템을 적용한 결과 시스템 성능에서 어휘 종속 인식률은 98.63%, 어휘 독립 인식률은 97.91%의 인식률을 나타내었다.

표면 요소의 시선방향에 의한 동일시선 상에 놓여있는 표면의 입체시 깊이 변화 (Stereoscopic depth of surfaces lying in the same visual direction depends on the visual direction of surface features)

  • 감기택
    • 인지과학
    • /
    • 제15권4호
    • /
    • pp.1-14
    • /
    • 2004
  • 동일한 시선방향에 놓여있는 두 대상의 경우 공간적으로 가까운 영역에서 급격한 깊이 변화가 발생된다. 이 상황은 고전적인 계산 모형들이 상의 대응 문제를 해결하는 과정에서 적용하고 있는 제약들의 가정과 배치되므로, 이 상황에서 얻어진 정신물리학적 결과는 여러 제약들의 타당성을 검토하는 데 유용하게 사용되어 왔다. 두 못 착시와 같이 두 대상이 동일시선에 놓여있는 상황에서는 각 대상의 양안 시차에 해당하는 입체시 깊이가 지각되지 않는다는 정신물리학적 결과와는 달리 동일시선에 무선점으로 구성된 두 표면이 주어지는 경우 각 표면은 해당 표면에 속한 점들의 양안시차에 해당되는 입체시 깊이가 지각된다. 두 상황에서 얻어진 상충된 결과가 양안시기제가 상의 대응 문제를 해결하는 방식의 차이 때문에 발생된 것인지, 단순히 무선점 표면을 구성하는 표면 요소인 각 점들의 시선방향이 고려되지 않았기 때문에 발생된 것임을 확인하기 위해 표면 요소들의 시선방향을 조작한 후 표면의 입체시 깊이를 조사하였다. 실험 1에서는 깊이가 각기 다른 표면을 가지는 무선점 입체 그림(random-dot stereogram: 이후 RDS)을 중첩시키면서 각 표면에 속한 점들의 시선 방향이 동일한 조건과 서로 다른 조건에서 지각되는 표면의 입체시 깊이를 측정하였다. 실험 2에서는 윤곽선에 의해 규정된 표면의 입체시 깊이가 다른 자극과의 시선방향에 따라 변화되는 지를 조사하였다. 두 실험 모두에서 다른 대상과 동일 시선에 주어진 표면의 경우에도 표면 요소들의 시선방향이 다른 경우 각 표면 요소의 양안시차와 유사한 입체시 깊이가 지각된 반면, 표면 요소들의 시선방향이 동일한 경우 표면의 입체시 깊이는 해당 표면 요소의 양안 시차보다 과소평가되었고 그 깊이 정도는 두 못 착시에서 발견되었던 입체시 깊이와 유사하였다. 이러한 결과는 각 표면 요소들의 시선 방향이 고려될 경우 두 점 상황과 두 표면 상황에서 상의 대응 문제는 유사한 방식으로 해결되며, 표면의 시선방향보다 표면 요소의 시선방향이 중요함을 시사한다. 본 연구에서 밝혀진 결과를 계산 모형의 여러 제약조건의 유용성 맥락에서 논의하였다.

  • PDF

HMM 부모델을 이용한 단어 인식에 관한 연구 (A Study on Word Recognition using sub-model based Hidden Markov Model)

  • 신원호
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 제11회 음성통신 및 신호처리 워크샵 논문집 (SCAS 11권 1호)
    • /
    • pp.395-398
    • /
    • 1994
  • In this paper the word recognition using sub-model based Hidden Markov Model was studied. Phoneme models were composed of 61 phonemes in therms of Korean language pronunciation characteristic. Using this, word model was maded by serial concatenation. But, in case of this phoneme concatenation, the second and the third phoneme of syllable are overlapped in distribution at the same time. So considering this, the method that combines the second and the third phoneme to one model was proposed. And to prevent the increase in number of model, similar phonemes were combined to one, and finially, 57 models were created. In experiment proper model structure of sub-model was searched for, and recognition results were compared. So similar recognition results were maded, and overall recognition rates were increased in case of using parameter tying method.

  • PDF