• 제목/요약/키워드: two-way reinforced concrete slabs

검색결과 31건 처리시간 0.021초

Flexural strength of roller compacted concrete pavements reinforced with glass-roved textiles

  • Madhkhan, Morteza;Nowroozi, Saeid;Torki, Mohammad E.
    • Structural Engineering and Mechanics
    • /
    • 제55권1호
    • /
    • pp.137-160
    • /
    • 2015
  • The one-way (two-way) flexural strength of RCC prisms (circular slabs) reinforced with glass fiber textiles is addressed. To this end, alkaline-resistant glass fiber textiles with three surface weights were used in the composite, the matrix concrete was designed with zero/nonzero slump, and the textiles were used with/without an intermediate layer provided by epoxy resin and sand mortar. Prisms were tested under a four-point loading apparatus and circular slabs were placed on simple supports under a central load. Effects of the amount and geometry of reinforcement, matrix workability, and the intermediate layer on the ultimate load and deflection were investigated. Results revealed that, with a specific reinforcement amount, there is an optimum textile tex for each case, depending on the matrix mix design and the presence of intermediate layer. Similar results were obtained in one-way and two-way bending tests.

고성능 철근으로 보강된 2방향 콘크리트 슬래브의 펀칭전단거동 (Punching Shear Behavior of High-Performance Steel Reinforced Two-Way Concrete Slabs)

  • 양준모;이주하;신현오;국경훈;윤영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.75-76
    • /
    • 2010
  • 고성능 철근으로 휨 보강된 이방향 슬래브를 제작하고 펀칭 전단실험을 실시하였다. 휨철근의 항복강도, 휨 철근비 및 기둥 인접부 휨철근의 집중배근을 변수로 하여 실험하였고, 펀칭 전단강도, 균열후 강성, 변형률 분포, 균열제어 효과 등을 비교, 분석하였다.

  • PDF

슬래브의 효율적인 구조 거동을 위한 강섬유보강 콘크리트의 부분적 활용에 관한 실험적 연구 (Study on the Utilization of Steel Fiber Reinforced Concrete for Efficient Structural Behavior in Slab System)

  • 윤영수;데니스미첼;최응규;박성균
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.469-474
    • /
    • 1998
  • To overcome the common deficiencies found in two-way slabs, such as excessive cracking around columns, excessive deflections and low punching shear strength, it was proposed to investigate the strategic use of steel fiber-reinforced concrete. Providing fiber-reinforced concrete results in an increase in the punching shear resistance, a significant increase in the ductility, greater post-cracking stiffness and better crack control.

  • PDF

Response of two-way reinforced concrete voided slabs enhanced by steel fibers and GFRP sheets under monotonic loading

  • Adel A. Al-Azzawi;Shahad H. Mtashar
    • Structural Monitoring and Maintenance
    • /
    • 제10권1호
    • /
    • pp.1-23
    • /
    • 2023
  • Various efforts have been made to reduce the weight of concrete slabs while preserving their flexural strength. This will result in reducing deflection and allows the utilization of longer spans. The top zone of the slab requires concrete to create the compression block for flexural strength, and the tension zone needs concrete to join with reinforcing for flexural strength. Also, the top and bottom slab faces must be linked to transmit stresses. Voided slab systems were and are still used to make long-span slab buildings lighter. Eight slab specimens of (1000*1000 (1000*1000 mm2) were cast and tested as two-way simply supported slabs in this research. The tested specimens consist of one solid slab and seven voided slabs with the following variables (type of slab solid and voided), thickness of slab (100 and 125 mm), presence of steel fibers (0% and 1%), and the number of GFRP layers). The voids in slabs were made using high-density polystyrene of dimensions (200*200*50 mm) with a central hole of dimensions (50*50*50 mm) at the ineffective concrete zones to give a reduction in weight by (34% to 38%). The slabs were tested as simply supported slabs under partial uniform loading. The results of specimens subjected to monotonic loading show that the combined strengthening by steel fibers and GFRP sheets of the concrete specimen (V-125-2GF-1%) shows the least deflection, deflection (4.6 mm), good ultimate loading capacity (192 MPa), large stiffness at cracking and at ultimate (57 and 41.74) respectively, more ductility (1.44), and high energy absorption (1344.83 kN.mm); so it's the best specimen that can be used as a voided slab under this type of loading.

Short term bond shear stress and cracking control of reinforced self-compacting concrete one way slabs under flexural loading

  • Aslani, Farhad;Nejadi, Shami;Samali, Bijan
    • Computers and Concrete
    • /
    • 제13권6호
    • /
    • pp.709-737
    • /
    • 2014
  • Fibre-reinforced self-compacting concrete (FRSCC) is a high-performance building material that combines positive aspects of fresh properties of self-compacting concrete (SCC) with improved characteristics of hardened concrete as a result of fibre addition. To produce SCC, either the constituent materials or the corresponding mix proportions may notably differ from the conventional concrete (CC). These modifications besides enhance the concrete fresh properties affect the hardened properties of the concrete. Therefore, it is vital to investigate whether all the assumed hypotheses about CC are also valid for SCC structures. In the present paper, the experimental results of short-term flexural load tests on eight reinforced SCC and FRSCC specimens slabs are presented. For this purpose, four SCC mixes - two plain SCC, two steel, two polypropylene, and two hybrid FRSCC slab specimens - are considered in the test program. The tests are conducted to study the development of SCC and FRSCC flexural cracking under increasing short-term loads from first cracking through to flexural failure. The achieved experimental results give the SCC and FRSCC slabs bond shear stresses for short-term crack width calculation. Therefore, the adopted bond shear stress for each mix slab is presented in this study. Crack width, crack patterns, deflections at mid-span, steel strains and concrete surface strains at the steel levels were recorded at each load increment in the post-cracking range.

확률기법에 기초한 FRP rebar로 보강된 콘크리트 슬래브의 펀칭전단강도 모델에 대한 고찰 (A Study on Probability-based Punching Shear Model of Concrete Slabs Reinforced with FRP rebars)

  • 주민관;김규선;김현중;김용재;이현기;심종성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.151-152
    • /
    • 2010
  • The objective of this study is to propose the new punching shear model for two-way concrete slabs of building structures and bridge decks structures reinforced with FRP or steel rebars. To do this, two evaluating methods are applied here. One is the ratio of test to model and the other is probability analysis with probabilistic uncertainties. In conclusion, it shows that the proposed punching shear model evaluates the tested punching shear strength as conservative with stability and it exhibits better probabilistic characteristics than existing punching shear models.

  • PDF

Reliability-based modeling of punching shear capacity of FRP-reinforced two-way slabs

  • Kurtoglu, Ahmet Emin;Cevik, Abdulkadir;Albegmprli, Hasan M.;Gulsan, Mehmet Eren;Bilgehan, Mahmut
    • Computers and Concrete
    • /
    • 제17권1호
    • /
    • pp.87-106
    • /
    • 2016
  • This paper deals with the reliability analysis of design formulations derived for predicting the punching shear capacity of FRP-reinforced two-way slabs. Firstly, a new design code formulation was derived by means of gene expression programming. This formulation differs from the existing ones as the slab length (L) was introduced in the equation. Next, the proposed formulation was tested for its generalization capability by a parametric study. Then, the stochastic analyses of derived and existing formulations were performed by Monte Carlo simulation. Finally, the reliability analyses of these equations were carried out based on the results of stochastic analysis and the ultimate state function of ASCE-7 and ACI-318 (2011). The results indicate that the prediction performance of new formulation is significantly higher as compared to available design equations and its reliability index is within acceptable limits.

철근 및 프리스트레스트 콘크리트 슬래브의 비선형 해석 (Nonlinear Analysis of Reinforced and Prestressed Concrete Slabs)

  • 최정호;김운학;신현목
    • 콘크리트학회지
    • /
    • 제8권6호
    • /
    • pp.223-234
    • /
    • 1996
  • 본 논문에서는 단조증가하중을 받는 철근 및 프리스트레스트 콘크리트 슬래브의 비선형거동, 즉 탄성, 비탄성, 극한영역에 이르기까지의 모든 하중이력에 대한 응력-변형도 관계와 균열의 진행 및 철근 및 텐던과 콘트리트의 응력과 변형도 등을 정확히 해석할 수 잇는 해석법의 제시를 목적으로 한다. 이러한 목적을 위하여 본 연구에서는 재료적 및 기하학적 비선형성을 고려하였다. 기하학적 비선형성은 Von Karman의 가정에 기본을 둔 total Lagrangian formulation에 의해 고려하였으며 재료적 비선형성에 대해서는 균열콘크리트에대한 인장, 압축, 전단모델과 콘크리트 중에 있는 철근 및 텐던모델을 조합하여 고려하였다. 이에 대한 콘크리트의 균열모델로서는 분산균열모델을 사용하였으며, 철근 및 텐던에 대해서는 1축 응력상태로 가정하여 등가의 분산분포된 철근 및 텐던층으로 모델화하였다. 본 논문에서 제안한 해석방법의 타당성을 검증하기 위하여 몇 개의 실험치를 해석치와 비교.검토한 결과, 본 논문의 해석방법에 의하면 철근 및 프리스트레스트 콘크리트 슬래브의 비선형거동을 보다 정확하게 예측할 수 있었다.

FE modelling of low velocity impact on RC and prestressed RC slabs

  • Ganesan, Partheepan;Kumar, S. Venkata Sai
    • Structural Engineering and Mechanics
    • /
    • 제71권5호
    • /
    • pp.515-524
    • /
    • 2019
  • The present study deals with the simulation of low velocity impact on prestressed and reinforced concrete (RC) slabs supported with different end conditions. The prestress is pre-applied on the RC slab in an analytical approach for the prestressed slab. RC slabs with dimensions $500{\times}600{\times}60mm$, $500{\times}600{\times}80mm$ and $500{\times}600{\times}120mm$ were used by changing support condition in two different ways; (i) Opposite sides simply supported, (ii) Adjacent sides simply supported with opposite corner propped. Deflection response of these specimens were found for the impact due to three different velocities. The effect of grade of concrete on deflection due to the impact of these slabs were also studied. Deflection result of $500{\times}500{\times}50mm$ slab was calculated numerically and compared the result with the available experimental result in literature. Finite element analyses were performed using commercially available ANSYS 16.2 software. The effectiveness of prestressing on impact resistant capacity of RC slabs are demonstrated by the way of comparing the deflection of RC slabs under similar impact loadings.

Estimation of impact characteristics of RC slabs under sudden loading

  • Erdem, R. Tugrul
    • Computers and Concrete
    • /
    • 제28권5호
    • /
    • pp.479-486
    • /
    • 2021
  • Reinforced concrete (RC) slabs are exposed to several static and dynamic effects during their period of service. Accordingly, there are many studies focused on the behavior of RC slabs under these effects in the literature. However, impact loading which can be more effective than other loads is not considered in the design phase of RC slabs. This study aims to investigate the dynamic behavior of two-way RC slabs under sudden impact loading. For this purpose, 3 different simply supported slab specimens are manufactured. These specimens are tested under impact loading by using the drop test setup and necessary measurement devices such as accelerometers, dynamic load cell, LVDT and data-logger. Mass and drop height of the hammer are taken constant during experimental study. It is seen that rigidity of the specimens effect experimental results. While acceleration values increase, displacement values decrease as the sizes of the specimens have bigger values. In the numerical part of the study, artificial neural networks (ANN) analysis is utilized. ANN analysis is used to model different physical dynamic processes depending upon the experimental variables. Maximum acceleration and displacement values are predicted by ANN analysis. Experimental and numerical values are compared and it is found out that proposed ANN model has yielded consistent results in the estimation of experimental values of the test specimens.