• Title/Summary/Keyword: two-temperature model

검색결과 1,876건 처리시간 0.029초

2영역 모델을 이용한 EGR사용 직접분사식 디젤엔진의 Nox생성예측 (Prediction of Nitric Oxide Formation Using a Two-Zone Model in a DI Diesel Engine)

  • 김철환;이진호;전광민;이교승
    • 대한기계학회논문집B
    • /
    • 제24권3호
    • /
    • pp.390-401
    • /
    • 2000
  • In this study, numerical calculation is carried out to investigate the influence of injection timing, fuel amount, intake $O_2$ concentration, and EGR on Nitric Oxide(NO) formation using a two-zone model in a diesel engine. Results can be summarized as follows. The NO formation is very sensitive to the burned gas temperature, so multi-zone model must be applied to combustion process to predict the burned gas temperature exactly. Since the burned gas temperature increases rapidly during the premixed combustion, most NO is formed within 20 crank angle degrees after ignition. As the injection timing is retarded, the combustion occurs later in the expansion process which causes the decrease of burned gas temperature and, as a result, NO formation decrease. The increase of fuel amount results in the increase of earlier formation of NO in the engine. As the intake $O_2$ concentration increases, the maximum pressure and burned gas temperature increase due to activate combustion. And, [O] mole fraction of equilibrium combustion products also increase. Therefore NO exponentially increases. If exhaust gas is recirculated, the burned gas temperature decreases which results in NO decrease. If exhaust gas is cooled, more NO can be decreased.

광역 기온자료를 이용한 국지 수온 추정오차 비교 분석 (Error Analysis of the Local Water Temperature Estimated by the Global Air Temperature Data)

  • 이길하;조홍연
    • 한국수자원학회논문집
    • /
    • 제44권4호
    • /
    • pp.275-283
    • /
    • 2011
  • 미래 기온변화 정보를 제공하는 General Circulation Model (GCM) 자료, 즉 광역 기온자료를 이용하여 우리나라의 국지 수온변화를 추정하는 연구를 수행하였다. 국지수온 추정은 마산만, 시화호, 낙동강 하구를 대상으로 Two-step 접근방법과 One-step 접근방법을 적용하여 각각의 추정오차를 비교 분석하였다. Two-step 추정방법은 광역 기온으로 국지기온을 추정하는 제1단계에서는 선형회귀분석 기법을 적용하였으며, 모든 지점에서 결정계수가 0.98~0.99 정도로 매우 높게 나타났다. 그리고 국지기온으로 국지수온을 추정하는 제2단계에서는 S-형태함수의 비선형 회귀분석기법을 적용하였으며 이 경우 RMS(Root-mean squared) 오차는 마산만에서 2.07 (온도 증가시기), 1.93 (온도 감소시기), 시화호에서는 2.59, 낙동강 하구에서는 1.58로 파악되었다. 반면 동일한 S-형태함수를 이용한 비선형 회귀분석기법으로 광역기온자료로부터 바로 국지 수온을 추정하는 One-step 접근방법을 적용한 경우, RMS 오차는 마산만이 2.28 (온도증가시기), 1.89 (온도감소시기), 시화호에서는 2.55, 낙동강하구는 1.52로 Two-step 접근방법과 비슷한 수준의 오차를 보이는 것으로 파악되었다. 따라서 광역 기온자료를 이용하여 국지 수온을 추정하는 경우에는 One-step 접근방법도 유용하고 실용적인 것으로 판단된다.

큰 개구부를 가진 단일구획 빌딩에서의 자연환기 모델의 개발 (Development of a Natural Ventilation Model in a Single Zone Building with Large Openings)

  • 조석호
    • 한국환경과학회지
    • /
    • 제27권6호
    • /
    • pp.359-369
    • /
    • 2018
  • A model has been developed to predict natural ventilation in a single zone building with large openings. This study first presents pressure-based equations on natural ventilation, that include the combined effect of wind and thermal buoyancy. Moreover, the concept of neutral pressure level(NPL) is introduced to consider the two-way flow through a large opening. The total pressure differences across the opening and the NPL are calculated, and nonlinear equations are solved to find the zonal pressure to satisfy mass conservation. For this analysis, an iterative technique of successively approximating the zonal pressure is used. The results of applying this study model to several simple cases are as follows. When there is no wind and only the stack effect is caused, a one-way flow occurs in both the top and bottom openings in the case of two openings of equal-area, and a one-way flow occurs in the top opening; however, a two-way flow occurs in the bottom opening in the case of two openings of unequal-area. When there is a wind effect, regardless of whether the outside air temperature is lower or higher than the indoor air temperature, air flows into the room through the bottom opening and out of the room through the top opening. As the wind velocity increases, the wind effect appears to be more influential than the stack effect owing to the temperature difference.

Calculation of fuel temperature profile for heavy water moderated natural uranium oxide fuel using two gas mixture conductance model for noble gas Helium and Xenon

  • Jha, Alok;Gupta, Anurag;Das, Rajarshi;Paraswar, Shantanu D.
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2760-2770
    • /
    • 2020
  • A model for calculation of fuel temperature profile using binary gas mixture of Helium and Xenon for gap gas conductance is proposed here. In this model, the temperature profile of a fuel pencil from fuel centreline to fuel surface has been calculated by taking into account the dilution of Helium gas filled during fuel manufacturing due to accumulation of fission gas Xenon. In this model an explicit calculation of gap gas conductance of binary gas mixture of Helium and Xenon has been carried out. A computer code Fuel Characteristics Calculator (FCCAL) is developed for the model. The phenomena modelled by FCCAL takes into account heat conduction through the fuel pellet, heat transfer from pellet surface to the cladding through the gap gas and heat transfer from cladding to coolant. The binary noble gas mixture model used in FCCAL is an improvement over the parametric model of Lassmann and Pazdera. The results obtained from the code FCCAL is used for fuel temperature calculation in 3-D neutron diffusion solver for the coolant outlet temperature of the core at steady operation at full power. It is found that there is an improvement in calculation time without compromising accuracy with FCCAL.

화재 발생시 연기 거동에 대한 수치해석적 연구 - 아트리움 공간을 중심으로 - (A Numerical Study of Smoke Movement by Fire In Atrium Space)

  • 노재성;유홍선;정연태
    • 한국안전학회지
    • /
    • 제13권1호
    • /
    • pp.70-76
    • /
    • 1998
  • The smoke filling process for the atrium space containing a fire source is simulated using two types of deterministic fire models : Zone model and Field model. The zone model used is the CFAST(version 1.6) model developed at the Building and Fire Research Laboratories, NIST in the USA. The field model is a self-developed fire field model based on Computational Fluid Dynamics(CFD) theories. This article is focused on finding out the smoke movement and temperature distribution in atrium space which is cubic in shape. A computational procedure for predicting velocity and temperature distribution in fire-induced flow is based on the solution, in finite volume method and non-staggered grid system, of 3-dimensional equations for the conservation of mass, momentum, energy, species and so forth. The fire model i. e. Zone model and Field model predicted similar results for the clear height and the smoke layer temperature.

  • PDF

CFD in Hypersonic Flight

  • 박철
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.1-8
    • /
    • 2009
  • This is a short review of how CFD contributed to hypersonic flights in the past 50 years. Two unexpected phenomena that occurred in the entry flights of the Apollo and Space Shuttle made us aware of the impact of the high temperature real-gas effects on hypersonic flights: pitching moment anomaly of up to 4 degrees, and radiation overshoot behind a shock wave. The so-called two-temperature nonequilibrium model was introduced to explain these phenomena. CFD techniques were developed to accommodate the two-temperature model. Presently, CFD can predict trim angle of attack to an accuracy of about 1 degree. A concerted effort was made to numerically reproduce the experimentally measured flow-field over a double-cone. As yet, perfect agreement between the experimental data and computation is not achieved. Scramjet technology development is disappointingly slow. The phenomenon of ablation during planetary entries is not yet predicted satisfactorily. In the future, one expects to see more research carried out on planetary entries and space tourism.

  • PDF

Prediction models of the shear modulus of normal or frozen soil-rock mixtures

  • Zhou, Zhong;Yang, Hao;Xing, Kai;Gao, Wenyuan
    • Geomechanics and Engineering
    • /
    • 제15권2호
    • /
    • pp.783-791
    • /
    • 2018
  • In consideration of the mesoscopic structure of soil-rock mixtures in which the rock aggregates are wrapped by soil at normal temperatures, a two-layer embedded model of single-inclusion composite material was built to calculate the shear modulus of soil-rock mixtures. At a freezing temperature, an interface ice interlayer was placed between the soil and rock interface in the mesoscopic structure of the soil-rock mixtures. Considering that, a three-layer embedded model of double-inclusion composite materials and a multi-step multiphase micromechanics model were then built to calculate the shear modulus of the frozen soil-rock mixtures. Given the effect of pore structure of soil-rock mixtures at normal temperatures, its shear modulus was also calculated by using of the three-layer embedded model. Experimental comparison showed that compared with the two-layer embedded model, the effect predicted by the three-layer embedded model of the soil-rock mixtures was better. The shear modulus of the soil-rock mixtures gradually increased with the increase in rock regardless of temperature, and the increment rate of the shear modulus increased rapidly particularly when the rock content ranged from 50% to 70%. The shear modulus of the frozen soil-rock mixtures was nearly 3.7 times higher than that of the soil-rock mixtures at a normal temperature.

Interactions in a homogeneous isotropic modified couple stress thermoelastic solid with multi-dual-phase-lag heat transfer and two temperature

  • Lata, Parveen;Kaur, Harpreet
    • Steel and Composite Structures
    • /
    • 제38권2호
    • /
    • pp.213-221
    • /
    • 2021
  • The objective of this paper is to study the deformation in a homogeneous isotropic thermoelastic solid using modified couple stress theory subjected to ramp-type thermal source with two temperature. The advantage of this theory is the involvement of only one material length scale parameter which can determine the size effects. Laplace and Fourier transform technique is applied to obtain the solutions of the governing equations. The components of displacement, conductive temperature, stress components and couple stress are obtained in the transformed domain. A numerical inversion technique has been used to obtain the solutions in the physical domain. The effect of two temperature is depicted graphically on the resulted quantities. Numerical results show that the proposed model can capture the size effects of microstructures.

Investigation of Boiling Heat Transfer Characteristics of Two-Phase Closed Thermosyphons with Various Internal Grooves

  • Han, Ku-Il;Cho, Dong-Hyun;Park, Jong-Un
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1739-1745
    • /
    • 2003
  • The boiling heat transfer characteristics of two-phase closed thermosyphons with internal grooves are studied experimentally and a simple mathematical model is developed to predict the performance of such thermosyphons. The study focuses on the boiling heat transfer characteristics of a two-phase closed thermosyphons with copper tubes having 50, 60, 70, 80, 90 internal grooves. A two-phase closed thermosyphon with plain copper tube having the same inner and outer diameter as those of grooved tube is also tested for comparison. Methanol is used as working fluid. The effects of the number of grooves, the operating temperature, the heat flux are investigated experimentally. From these experimental results, a simple mathematical model is developed. In the present model, boiling of liquid pool in the evaporator is considered for the heat transfer mechanism of the thermosyphon. And also the effects of the number of grooves, the operating temperature, the heat flux are brought into consideration. A good agreement between the boiling heat transfer coefficient of the thermosyphon estimated from experimental results and the predictions from the present mathematical model is obtained. The experimental results show that the number of grooves and the amount of the working fluid are very important factors for the operation of thermosyphons. The two-phase closed thermosyphon with copper tubes having 60 internal grooves shows the best boiling heat transfer performance.

한국형모델의 항공기 관측 온도의 정적 편차 보정 연구 (A Study of Static Bias Correction for Temperature of Aircraft based Observations in the Korean Integrated Model)

  • 최다영;하지현;황윤정;강전호;이용희
    • 대기
    • /
    • 제30권4호
    • /
    • pp.319-333
    • /
    • 2020
  • Aircraft observations constitute one of the major sources of temperature observations which provide three-dimensional information. But it is well known that the aircraft temperature data have warm bias against sonde observation data, and therefore, the correction of aircraft temperature bias is important to improve the model performance. In this study, the algorithm of the bias correction modified from operational KMA (Korea Meteorological Administration) global model is adopted in the preprocessing of aircraft observations, and the effect of the bias correction of aircraft temperature is investigated by conducting the two experiments. The assimilation with the bias correction showed better consistency in the analysis-forecast cycle in terms of the differences between observations (radiosonde and GPSRO (Global Positioning System Radio Occultation)) and 6h forecast. This resulted in an improved forecasting skill level of the mid-level temperature and geopotential height in terms of the root-mean-square error. It was noted that the benefits of the correction of aircraft temperature bias was the upper-level temperature in the midlatitudes, and this affected various parameters (winds, geopotential height) via the model dynamics.