• Title/Summary/Keyword: two-scale grid

Search Result 130, Processing Time 0.026 seconds

Service ORiented Computing EnviRonment (SORCER) for deterministic global and stochastic aircraft design optimization: part 2

  • Raghunath, Chaitra;Watson, Layne T.;Jrad, Mohamed;Kapania, Rakesh K.;Kolonay, Raymond M.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.317-334
    • /
    • 2017
  • With rapid growth in the complexity of large scale engineering systems, the application of multidisciplinary analysis and design optimization (MDO) in the engineering design process has garnered much attention. MDO addresses the challenge of integrating several different disciplines into the design process. Primary challenges of MDO include computational expense and poor scalability. The introduction of a distributed, collaborative computational environment results in better utilization of available computational resources, reducing the time to solution, and enhancing scalability. SORCER, a Java-based network-centric computing platform, enables analyses and design studies in a distributed collaborative computing environment. Two different optimization algorithms widely used in multidisciplinary engineering design-VTDIRECT95 and QNSTOP-are implemented on a SORCER grid. VTDIRECT95, a Fortran 95 implementation of D. R. Jones' algorithm DIRECT, is a highly parallelizable derivative-free deterministic global optimization algorithm. QNSTOP is a parallel quasi-Newton algorithm for stochastic optimization problems. The purpose of integrating VTDIRECT95 and QNSTOP into the SORCER framework is to provide load balancing among computational resources, resulting in a dynamically scalable process. Further, the federated computing paradigm implemented by SORCER manages distributed services in real time, thereby significantly speeding up the design process. Part 1 covers SORCER and the algorithms, Part 2 presents results for aircraft panel design with curvilinear stiffeners.

Impact of Vegetation Heterogeneity on Rainfall Excess in FLO-2D Model : Yongdam Catchment (용담댐 유역에서 식생 이질성이 FLO-2D 유량 산정에 미치는 영향)

  • Song, Hojun;Lee, Khil-Ha
    • Journal of Environmental Science International
    • /
    • v.28 no.2
    • /
    • pp.259-266
    • /
    • 2019
  • Two main sources of data, meteorological data and land surface characteristics, are essential to effectively run a distributed rainfall-runoff model. The specification and averaging of the land surface characteristics in a suitable way is crucial to obtaining accurate runoff output. Recent advances in remote sensing techniques are often being used to derive better representations of these land surface characteristics. Due to the mismatch in scale between digital land cover maps and numerical grid sizes, issues related to upscaling or downscaling occur regularly. A specific method is typically selected to average and represent the land surface characteristics. This paper examines the amount of flooding by applying the FLO-2D routing model, where vegetation heterogeneity is manipulated using the Manning's roughness coefficient. Three different upscaling methods, arithmetic, dominant, and aggregation, were tested. To investigate further, the rainfall-runoff model with FLO-2D was facilitated in Yongdam catchment and heavy rainfall events during wet season were selected. The results show aggregation method provides better results, in terms of the amount of peak flow and the relative time taken to achieve it. These rwsults suggest that the aggregation method, which is a reasonably realistic description of area-averaged vegetation nature and characteristics, is more likely to occur in reality.

A Study on Determination of VPP Cloud Charges (VPP 클라우드 요금 산정에 관한 연구)

  • Lim, Chung-Hwan;Kim, Dong-Sub;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.299-308
    • /
    • 2022
  • Recent, energy transition policies are driving to increase in the number of small photovoltaic(PV) generators. It is difficult for system operators to accurately anticipate the amount of power generated from such small scale PV generation, and this may disrupt dispatch schedules and result in an increase in cost. The need for a Virtual Power Plant(VPP) is emerging as a way of resolving these problems, as it would integrate small-scale PV plants and eliminate uncertainty about the amount of power generated, control voltage, and provide power reserves. In this paper, the cost evaluation methods are described for determination of VPP cloud charges both Net Present Value(NPV) method and Profitability Index(PI) method, the calculated outcomes of the two types of cost evaluation methods are presented in detail. It seems we secure profitability as we get 1.22 of profitability index from calculation results, it may be attractive for the aggregator as NPV is enough for satisfying profitability.

Comparative study of analytical models of single-cell tornado vortices based on simulation data with different swirl ratios

  • Han Zhang;Hao Wang;Zhenqing Liu;Zidong Xu;Boo Cheong Khoo;Changqing Du
    • Wind and Structures
    • /
    • v.36 no.3
    • /
    • pp.161-174
    • /
    • 2023
  • The analytical model of tornado vortices plays an essential role in tornado wind description and tornado-resistant design of civil structures. However, there is still a lack of guidance for the selection and application of tornado analytical models since they are different from each other. For single-cell tornado vortices, this study conducts a comparative study on the velocity characteristics of the analytical models based on numerically simulated tornado-like vortices (TLV). The single-cell stage TLV is first generated by Large-eddy simulations (LES). The spatial distribution of the three-dimensional mean velocity of the typical analytical tornado models is then investigated by comparison to the TLV with different swirl ratios. Finally, key parameters are given as functions of swirl ratio for the direct application of analytical tornado models to generate full-scale tornado wind field. Results show that the height of the maximum radial mean velocity is more appropriate to be defined as the boundary layer thickness of the TLV than the height of the maximum tangential mean velocity. The TLV velocity within the boundary layer can be well estimated by the analytical model. Simple fitted results show that the full-scale maximum radial and tangential mean velocity increase linearly with the swirl ratio, while the radius and height corresponding to the position of these two velocities decrease non-linearly with the swirl ratio.

Tracer Experiment for the Investigation of Urban Scale Dispersion of Air Pollutants - Simulation by CALPUFF Dispersion Model and Diffusion Feature of Tracer Gases (추적자 확산 실험에 의한 서울 도심 확산 현상 연구 - 추적기체의 확산특징과 CALPUFF 모델에 의한 모사)

  • Lee, Chong-Bum;Kim, Jea-Chul;Lee, Gang-Woong;Ro, Chul-Un;Kim, Hye-Kyeong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.4
    • /
    • pp.405-419
    • /
    • 2007
  • A series of tracer experiments for the evaluation of atmospheric dispersion was performed over the urban area of Seoul using two inert, non-deposition perfluorocarbon (PMCH and m-PDCH) gases during three years campaign on 2002, 2003 and 2005. 30 sampling sites for collecting these tracers were located along two arcs of 2.5 and 5 kilometers downwind from the release point. About ten measurements which each lasted for 2 hours or 4 hours were made over the two consecutive days during each campaign. CALPUFF and MM5 meteorological model were applied to evaluate the urban dispersion in detail. Size of Modeling domain was $27\;km{\times}23\;km$ and the fine nest in the modeling domain had a grid size of 0.5 km. The results showed that CALPUFF dispersion model had a tendency to estimate tracer concentrations about $2{\sim}5$ times less than those of ambient samples under many conditions. These consistent inaccuracy in urban dispersion was attributed to inherent inaccuracy and lack of details in terrain data at urban area.

Numerical Simulation of Wave Deformation due to a Submerged Structure with a Second-order VOF Method (2차 정확도 VOF기법을 활용한 수중구조물에 의한 파랑변화 예측)

  • Ha, Tae-Min;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.111-117
    • /
    • 2010
  • A three-dimensional numerical model is employed to investigate wave deformation due to a submerged structure. The three-dimensional numerical model solves the spatially averaged Navier-Stokes equations for two-phase flows. The LES(large-eddy-simulation) approach is adopted to model the turbulence effect by using the Smagorinsky SGS(sub-grid scale) closure model. The two-step projection method is employed in the numerical solutions, aided by the Bi-CGSTAB technique to solve the pressure Poisson equation for the filtered pressure field. The second-order accurate VOF(volume-of-fluid) method is used to track the distorted and broken free surface. A simple linear wave is generated on a constant depth and compared with analytical solutions. The model is then applied to study wave deformation due to a submerged structure and the predicted results are compared with available laboratory measurements.

Estimation of Representative Area-Level Concentrations of Particulate Matter(PM10) in Seoul, Korea (미세먼지(PM10)의 지역적 대푯값 산정 방법에 관한 연구 - 서울특별시를 대상으로)

  • SONG, In-Sang;KIM, Sun-Young
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.118-129
    • /
    • 2016
  • Many epidemiological studies, relying on administrative air pollution monitoring data, have reported the association between particulate matter ($PM_{10}$) air pollution and human health. These monitoring data were collected at a limited number of fixed sites, whereas government-generated health data are aggregated at the area level. To link these two data types for assessing health effects, it is necessary to estimate area-level concentrations of $PM_{10}$. In this study, we estimated district (Gu)-level $PM_{10}$ concentrations using a previously developed pointwise exposure prediction model for $PM_{10}$ and three types of point locations in Seoul, Korea. These points included 16,230 centroids of the largest census output residential areas, 422 community service centers, and 610 centroids on the 1km grid. After creating three types of points, we predicted $PM_{10}$ annual average concentrations at all locations and calculated Gu averages of predicted $PM_{10}$ concentrations as representative Gu-estimates. Then, we compared estimates to each other and to measurements. Prediction-based Gu-level estimates showed higher correlations with measurement-based estimates as prediction locations became more population representative ($R^2=0.06-0.59$). Among the three estimates, grid-based estimates gave lowest correlations compared to the other two(0.35-0.47). This study provides an approach for estimating area-level air pollution concentrations and assesses air pollution health effects using national-scale administrative health data.

Parallel Cell-Connectivity Information Extraction Algorithm for Ray-casting on Unstructured Grid Data (비정렬 격자에 대한 광선 투사를 위한 셀 사이 연결정보 추출 병렬처리 알고리즘)

  • Lee, Jihun;Kim, Duksu
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.1
    • /
    • pp.17-25
    • /
    • 2020
  • We present a novel multi-core CPU based parallel algorithm for the cell-connectivity information extraction algorithm, which is one of the preprocessing steps for volume rendering of unstructured grid data. We first check the synchronization issues when parallelizing the prior serial algorithm naively. Then, we propose a 3-step parallel algorithm that achieves high parallelization efficiency by removing synchronization in each step. Also, our 3-step algorithm improves the cache utilization efficiency by increasing the spatial locality for the duplicated triangle test process, which is the core operation of building cell-connectivity information. We further improve the efficiency of our parallel algorithm by employing a memory pool for each thread. To check the benefit of our approach, we implemented our method on a system consisting of two octa-core CPUs and measured the performance. As a result, our method shows continuous performance improvement as we add threads. Also, it achieves up to 82.9 times higher performance compared with the prior serial algorithm when we use thirty-two threads (sixteen physical cores). These results demonstrate the high parallelization efficiency and high cache utilization efficiency of our method. Also, it validates the suitability of our algorithm for large-scale unstructured data.

The Study on Stability Channel Technology by Using Groyne in Alluvial Stream - Riverside Protection Techniques by Using Groyne - (충적하천에서 수제에 의한 안정하도 확보기술에 관한 연구 - 수제에 의한 하안보호 기법 -)

  • Park, Hyo-Gil;Jung, Sung-Soon;Kim, Chul-Moon;Ahn, Won-Sik;Jee, Hong-Kee
    • Journal of Wetlands Research
    • /
    • v.13 no.1
    • /
    • pp.79-94
    • /
    • 2011
  • As demonstrated in study for non-submerged groynes, the flow field is predominantly two-dimensional, with mainly horizontal eddies. The eddies shed form the tips of the groynes and migrate in the flow direction. These eddies have horizontal dimensions in the order of tens of meters and time-scales in the order of minutes. In the standard flow simulations, these motions are usually not resolved, due to a too coarse grid, too large time steps and, more importantly, the use of inadequate turbulence modelling. using for example a k-${\varepsilon}$ model, it is necessary to introduce substantial modifications. Therefore simulation resolved in this study, were carried out using the DELFT-3D-MOR programme, which is part of the DELFT3D software package of WL/Delft Hydraulics and In this study, apply a two-dimensional depth-averaged model, taking an horizontal large eddy simulation(HLES). The bed morphology computed when using HLES, as well as the associated time-scale, is similar to what has been obseved in a field case. When using a mean-flow model with-out HELS, the bed morphology is less realistic and the morphological time-scale is much larger. This slow development is the result of neglecting(or averaging). the strong velocity fluctuations associated with the time-varying eddy formation.

Large-Scale Slope Stability Analysis Using Climate Change Scenario (1): Methodologies (기후변화 시나리오를 이용한 광역 사면안정 해석(1): 방법론)

  • Choi, Byoung-Seub;Oh, Sung-Ryul;Lee, Kun-Hyuk;Lee, Gi-Ha;Kwon, Hyun-Han
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.3
    • /
    • pp.193-210
    • /
    • 2013
  • This study aims to assess the slope stability variation of Jeollabuk-do drainage areas by RCM model outputs based on A1B climate change scenario and infinite slope stability model based on the specific catchment area concept. For this objective, we downscaled RCM data in time and space: from watershed scale to rain gauge scale in space and from monthly data to daily data in time and also developed the GIS-based infinite slope stability model based on the concept of specific catchment area to calculate spatially-distributed wetness index. For model parameterization, topographic, geologic, forestry digital map were used and model parameters were set up in format of grid cells($90m{\times}90m$). Finally, we applied the future daily rainfall data to the infinite slope stability model and then assess slope stability variation under the climate change scenario. This research consists of two papers: the first paper focuses on the methodologies of climate change scenario preparation and infinite slope stability model development.