Browse > Article
http://dx.doi.org/10.11108/kagis.2016.19.4.118

Estimation of Representative Area-Level Concentrations of Particulate Matter(PM10) in Seoul, Korea  

SONG, In-Sang (Department of Geography, Seoul National University)
KIM, Sun-Young (Institute of Health and Environment, Seoul National University)
Publication Information
Journal of the Korean Association of Geographic Information Studies / v.19, no.4, 2016 , pp. 118-129 More about this Journal
Abstract
Many epidemiological studies, relying on administrative air pollution monitoring data, have reported the association between particulate matter ($PM_{10}$) air pollution and human health. These monitoring data were collected at a limited number of fixed sites, whereas government-generated health data are aggregated at the area level. To link these two data types for assessing health effects, it is necessary to estimate area-level concentrations of $PM_{10}$. In this study, we estimated district (Gu)-level $PM_{10}$ concentrations using a previously developed pointwise exposure prediction model for $PM_{10}$ and three types of point locations in Seoul, Korea. These points included 16,230 centroids of the largest census output residential areas, 422 community service centers, and 610 centroids on the 1km grid. After creating three types of points, we predicted $PM_{10}$ annual average concentrations at all locations and calculated Gu averages of predicted $PM_{10}$ concentrations as representative Gu-estimates. Then, we compared estimates to each other and to measurements. Prediction-based Gu-level estimates showed higher correlations with measurement-based estimates as prediction locations became more population representative ($R^2=0.06-0.59$). Among the three estimates, grid-based estimates gave lowest correlations compared to the other two(0.35-0.47). This study provides an approach for estimating area-level air pollution concentrations and assesses air pollution health effects using national-scale administrative health data.
Keywords
Particulate Matter; Regression Kriging; Area Prediction; Census Output Area; Seoul;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Atkinson, R. W., S. Kang, H. R. Anderson, I. C. Mills, and H. A. Walton. 2014. Epidemiological time series studies of $PM_{2.5}$ and daily mortality and hospital admissions: a systematic review and meta-analysis. Thorax 69(7):660-665.   DOI
2 Brindley, P., S. M. Wise, R. Maheswaran, and R. P. Haining. 2005. The effect of alternative representations of population location on the areal interpolation of air pollution exposure. Computers, Environment and Urban Systems 29(4):455-469.   DOI
3 Brook, R. D., S. Rajagopalan, C. A. Pope 3rd, J. R. Brook, A. Bhatnagar, A. V. Diez-Roux, F. Holguin, Y. Hong, R.V. Luepker, M.A. Mittleman, A. Peters, D. Siscovick, S.C. Smith, L. Whitsel, and J.D. Kaufman. 2010. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121(21):2331-2378.   DOI
4 Cressie, N. A. C. 1993. Statistics for spatial data(revised edition). John Wiley & Sons, New York, U.S. p.900.
5 Eum, Y.S., I.S. Song, H.C. Kim, J.H. Leem, and S.Y. Kim. 2015. Computation of geographic variables for air pollution prediction models in South Korea. Environmental Health Toxicology 30(e2015010).   DOI
6 Hao, Y., H. Flowers, M. M Monti, and J. R Qualters. 2012. U.S. census unit population exposures to ambient air pollutants. International Journal of Health Geographics 11(3):1-9.   DOI
7 Hengl, T. 2007. A practical guide to geostatistical mapping of environmental variables. JRC Scientific and Technical Reports. European Commission, Luxembourg. p.157.
8 Jeong, J.C. 2014. A spatial distribution and time series change of $PM_{10}$ in Seoul City. Journal of the Korean Association of Geographic Information Studies 17(1):61-69 (정종철. 2014. 서울시 PM10 공간분포 분석과 시계열 변화. 한국지리정보학회지 17(1):61-69).   DOI
9 Kim, S.Y. 2016. National exposure prediction approach for $PM_{10}\;and\;NO_2$ in South Korea. Proceedings of the Conference of International Society for Environmental Epidemiology and International Society of Exposure Science - Asia Chapter 2016. Sapporo, Japan, June 26-29, 2016. p.93.
10 Kim, S.Y., L. Sheppard, S. Bergen, A.A. Szpiro, P.D. Sampson, J.D. Kaufman, and S. Vedal. 2016. Prediction of fine particulate matter chemical components for the Multi-Ethnic Study of Atherosclerosis Cohort: a comparison of two modeling approaches. Journal of Exposure Science and Environmental Epidemiology 26(5):520-528.   DOI
11 Mercer, L.D., A.A. Szpiro, L. Sheppard, J. Lindstrom, S.D. Adar, R.W. Allen, E.L. Avol, A.P. Oron, T.Larson, L.-J.S. Liu, and J.D. Kaufman. 2011. Comparing universal kriging and land-use regression for predicting concentrations of gaseous oxides of nitrogen($NO_x$) for the Multi -Ethnic Study of Atherosclerosis and Air Pollution(MESA Air). Atmospheric Environment 45(26):4412-4420.   DOI
12 Min, K.D., Y.S. Eum, H.J. Kwon, and S.Y. Kim. 2015. Community air pollution monitoring design for epidemiological application in Seoul. Proceedings of the International Conference of the Korean Society of Environmental Health and Toxicology. Jeju, Korea, June 17, 2015. p.105.
13 Ministry of Environment. 2011. Guidelines for installation and management of national air quality monitoring networks. p.409 (환경부. 2011. 대기오염측정망 설치 운영지침. 409쪽).
14 Ministry of Environment. 2016. http://egis.me.go.kr. Accessed October 31, 2016. (환경부. 2016. 환경지리정보시스템 웹페이지).
15 Montgomery, D.C., E.A. Peck, and G. G. Vining. 2001. Introduction to linear regression analysis (third edition). John Wiley & Sons, New York, U.S. p.310, 534, 535, 642.
16 Sampson, P.D., M. Richards, A.A. Szpiro, S. Bergen, L. Sheppard, T.V. Larson, and J.D. Kaufman. 2013. A regionalized national universal kriging model using Partial Least Squares regression for estimating annual $PM_{2.5}$ concentrations in epidemiology. Atmospheric Environment 75:383-392.   DOI
17 Parenteau, M.P. and M. C. Sawada. 2012. The role of spatial representation in the development of a LUR model for Ottawa, Canada. Air Quality, Atmosphere and Health 5(3):311-323.   DOI
18 Park, H.J., H.S. Shin, Y.H. Roh, K.M. Kim, and K.H. Park. 2012. Estimating forest carbon stocks in Danyang using kriging methods for aboveground biomass. Journal of the Korean Association of Geographic Information Studies 15(1):16-33 (박현주, 신휴석, 노영희, 김경민, 박기호. 2012. 크리깅 기법을 이용한 단양군의 산림 탄소저장량 추정-지상부 바이오매스를 중심으로-. 한국지리정보학회지 15(1):16-33).   DOI
19 Pope III, C. A. and D.W. Dockery. 2006. Health effects of fine particulate air pollution : lines that connect. Journal of the Air & Waste Management 56(6):709-742.   DOI
20 Stehman, S.V. and W. S. Overton. 1996. Spatial sampling. Practical Handbook of Spatial Statistics. CRC Press, Boca Raton, USA. pp.31-64.
21 Wackernagel, H. 2003. Multivariate geostatistics : an introduction with applications. Springer-Verlag, Berlin, Germany. p.387.
22 Yi, S.J., H. Kim, and S.Y. Kim. 2016. Exploration and application of regulatory $PM_{10}$ measurement data for developing long-term prediction models in South Korea. Journal of Korean Society for Atmospheric Environment 32(1):114-126 (이선주, 김호, 김선영. 2016. $PM_{10}$ 장기노출 예측모형 개발을 위한 국가 대기오염측정 자료의 탐색과 활용. 한국대기환경학회지 32(1): 114-126).   DOI
23 Yoo, C.J. and K.W. Nam. 2014. Spatio-temporal distribution analysis of oneperson household -the case of Busan City-. Journal of the Korean Association of Geographic Information Studies 17(2):59-71 (유창주, 남광우. 2014. 1인가구의 시공간적 분포 분석 -부산시를 사례로-. 한국지리정보학회지 17(2):59-71).   DOI
24 Keller, J.P, C. Olives, S.Y. Kim, L. Sheppard, P. D. Sampson, A. A. Szpiro, A.P. Oron, J. LindstrOm, S. Vedal, and J. D. Kaufman. 2015. A unified spatiotemporal modeling approach for prediction of multiple air pollutants in the Multi-Ethnic Study of Atherosclerosis and Air Pollution. Environmental Health Perspectives 123(4):301-309.   DOI
25 Kang, Y.O., E.J. Yoon, and J.H. Jung. 2007. A study on the delineation of census output areas in Korea. Journal of the Korean Urban Geographical Society 10(1):15-36 (강영옥, 윤은주, 정재희. 2007. 소지역 통계구역 획정방안 연구. 한국도시지리학회지 10(1):15-36).