• Title/Summary/Keyword: two-lane highway

Search Result 94, Processing Time 0.024 seconds

A Study on Optimization of Lane-Use and Traffic Signal Timing at a Signalized Intersection (신호교차로의 차로 배정과 신호시간 최적화 모형에 관한 연구)

  • Kim, Ju Hyun;Shin, Eon Kyo
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.93-103
    • /
    • 2015
  • PURPOSES : The purpose of this study is to present a linear programing optimization model for the design of lane-based lane-uses and signal timings for an isolated intersection. METHODS: For the optimization model, a set of constraints for lane-uses and signal settings are identified to ensure feasibility and safety of traffic flow. Three types of objective functions are introduced for optimizing lane-uses and signal operation, including 1) flow ratio minimization of a dual-ring signal control system, 2) cycle length minimization, and 3) capacity maximization. RESULTS : The three types of model were evaluated in terms of minimizing delay time. From the experimental results, the flow ratio minimization model proved to be more effective in reducing delay time than cycle length minimization and capacity maximization models and provided reasonable cycle lengths located between those of other two models. CONCLUSIONS : It was concluded that the flow ratio minimization objective function is the proper one to implement for lane-uses and signal settings optimization to reduce delay time for signalized intersections.

Comparative Study of Two Measures of Traffic Flow Effectiveness at Roundabouts and Signalized Intersections (회전교차로와 신호교차로의 설치기준 지표 비교에 관한 연구)

  • Kim, Ju Hyun;Shin, Eon Kyo;Kwon, Min Young
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.95-107
    • /
    • 2016
  • PURPOSES : This study compared two measures of traffic flow effectiveness on roads with roundabouts and signalized intersections and determined the more appropriate measure. METHODS : In addition to average delay time, the conventionally used measure, average travel time was introduced to measure traffic flow effectiveness because it is able to be obtained through field survey and reflect different travel distances and speed limits of roundabouts and signalized intersections. Using the two measures, roundabouts and signalized intersections were compared through simulations in terms of traffic flow effectiveness. RESULTS : For one-way single-lane roads, the two measures indicated consistent results that roundabouts were more effective than were signalized intersections when the traffic volume was less than 300 vphpl but vice versa when it exceeded 450 vphpl; however, the measures yielded inconsistent results when the volume was 350~400 vphpl. For one-way double-lane roads, the two measures indicated consistent results that roundabouts were more effective than were signalized intersections when the volume was less than 200 vphpl but vice versa when it exceeded 400 vphpl; however, the measures yielded inconsistent results when the volume was 250~350 vphpl. The results obtained using the two measures differed substantially for double-lane roads because behaviors such as weaving and lane changing at roundabouts are more common in double-lane roads than in single-lane roads. CONCLUSIONS : The average delay time would be lower on roads with roundabouts, but average travel time would be lower on roads with signalized intersections. Thus, evaluating the relative effectiveness of roads with roundabouts and signalized intersections by using average delay time alone would be inappropriate, whereas using average travel time as the evaluation index would yield fairer results.

A Mathematical Model for Determination of PCE's Based on Delay for Two-Lane Two-Way Highway (양방향 2차로 도로의 지체시간 산정을 이용한 승용차환산계수 결정이론)

  • 이승준;최재성
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.2
    • /
    • pp.149-162
    • /
    • 1999
  • One of the most important steps of the design, capacity and operation analysis stapes in the two-lane two way highways is the effect of heavy vehicle to traffic flow quality. This heavy vehicle's effect on traffic flow can be represented as PCE, which is the number of passenger cars that are displaced by a single heavy vehicle of a particular type under prevailing roadway, traffic, and control conditions. In this paper, we focus on the heavy vehicles effect on volume, speed, delay, and the maneuver of freedom which are major MOE's in traffic operation analysis and PCE criterion which should be measurable, determinable and able to reflect the traffic flow characteristics. Therefore, the objective of the paper is to determine the PCE criterion and to develop a new PCE determination method. In this study, delay is adopted as PCE criterion and, for calculation of delay, the highway is divided into the passing zone and the no-passing zone. PCE is determined by comparing the delay due to total traffic flow interaction with the delay due to a single heavy vehicle, Also, this paper proposes a new method to determine the average PCE on the highway that has the passing zones and no-passing zones.

  • PDF

Analysis of Truck Management Strategies Impacts on Highway (고속도로 상에서의 트럭교통 관리전략에 대한 영향 분석)

  • Yang, Choong-Heon;Son, Young-Tae
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.175-184
    • /
    • 2009
  • The study analyzes likely impacts of left truck lane restriction strategies on urban freeways based on a traffic simulation model. This study contains two main parts. The first part is performed to develop feasible alternatives as well as provide insights into conditions under left truck lane restrictions would be effective based on the analysis of two representative hypothetical highways. Different levels of O-D demands and truck percentage is at least restrictions would work when maximum rate of flow is more than 1,300vphpl or truck percentage is at least over loft of the total traffic. The second part of our study concerns a case study on a region with perhaps the highest truck volumes in the U.S. - a northbound section of Interstate 710 corridor in Los Angeles County, Southern California. The results show that restricting the two leftmost lanes under congested traffic with heavy ruck use, provides the most positive impacts in terms of improving the flow of traffic and saving fuel. In addition, our study demonstrates that in general, the number of lanes restricted is a crucial factor in the success of this strategy.

  • PDF

A Performance Analysis Methodology for Evaluating Highway Geometric Improvement (도로(道路) 선형개선(線形改善)의 Performance 분석기법(分析技法)에 관한 연구(硏究))

  • Choi, Jai Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.75-88
    • /
    • 1989
  • The state-of-art knowledge of highway performance analysis model was developed in this research and a computerized process named GUCAM(Geometric-specific User Cost Analysis Model) was established to facilitate the computational procedure. A comparison of GUCAM was made to HIAP program using a case study of widening two-lane rural highway into four-lane rural. The comparison indicated that GUCAM was more realistic and sensitive to the highway geometric features by virtue of the new methodology for the distribution of highway curves and grades. However, the model still remains insensitive to improvements at isolated locations such as specific grades or curves. Further research is required to straighten out this problem.

  • PDF

A Study on the Capacity Analysis of 8-lane basic section Freeway (8차로 고속도로 기본구간 용량분석에 관한 연구)

  • 김상구;서영선
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.3
    • /
    • pp.87-96
    • /
    • 1999
  • It is very important to analyze the capacity of basic freeway section in terms of planning, design, and operation of roads. Capacity, in Korean Highway Capacity Manual was Published in 1992, had been determined by data collected in only 4-lane freeway. But, Korea is continuously planning and constructing multi-lane roads for increasing traffic demand. For this reason, it is necessary to determine the capacity for multi-lane freeways. This study goals are two-fold the determination of lane capacity for 8-lane freeway; and the development of methodology determining total capacity using lane friction factor This study utilized the data collected by loop detectors at a station of FTMS in Kyungbu expressway. For determining capacities, this study analyzed maximum flow rate in various aspects such as collecting period, each lane, and total lane in one-way. In addition, this study evaluated the breakdown in traffic flow relations in order to find out interrelation of breakdown among lanes. Through this analysis, this study determined lane friction factors, critical speed, and critical density. Finally, this study expressed a new methodology of capacity analysis for multi-lane freeways using some findings from this analysis.

  • PDF

A Study of Level of Service Analysis Method of Arterials including Exclusive Median Bus Lanes (중앙버스전용차로가 설치된 간선도로의 서비스수준 분석방법에 관한 연구)

  • Cho, Hanseon;Kim, Taehyung
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.135-144
    • /
    • 2013
  • PURPOSES : The purpose of this paper is to develop a methodology to estimate level of service of arterial including Exclusive Median Bus Lanes. METHODS : On 6 Exclusive Median Bus Lanes routes in Seoul, bus travel time and number of bus-stop per km were investigated. Also whether or not passing lane exists at bus-stop was checked. Based on the data from sites, bus travel time was estimated according to length of segment, number of bus-stop per km and whether or not passing lane exists at bus-stop. RESULTS : A bus travel time table was developed according to length of segment, number of bus-stop per km and whether or not passing lane exists at bus-stop. After bus travel speed and passenger car travel speed is estimated based on each travel time table and length of segment, two speeds are combined with weighted average speed using traffic volume of each lane group. Then weighted average speed is a measure of effectiveness of arterial including Exclusive Median Bus Lanes. CONCLUSIONS : It can be concluded that the proposed methodology can estimate level of service of arterial including Exclusive Median Bus Lanes considering the operation characteristics of Exclusive Median Bus Lanes.

A Study On Context Sensitive Highway Design Based On Improved Operating Speed Prediction Methods in National Roads (환경 친화적 도로 설계를 위한 기초 연구 (노선대 지형 및 지역 요소를 고려한 일반국도 주행속도 예측 모형))

  • Kim, Sang-Youp;Choi, Jai-Sung
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.17-33
    • /
    • 2005
  • Highway design speed is a very important design element which determines highway design level. When determining highway design speed, one would estimate it utilizing the most likelihood of design speed and vehicle operating speed relationship. Existing operating speed prediction models only include highway geometric characteristics and their impacts on speed, which usually can not consider the impact of highway design speed on surrounding roadway environment and land use pattern. If this happens, excessive highway construction cost and huge environmental impact can occur. In this research project, a new vehicle operating speed prediction model was developed which can reflect the effect of surrounding roadway environment into vehicle speed prediction. The followings are the research findings : Firstly, highway terrain types and land use pattern on national roads were classified and integrated into drivers' visual recognition pattern. This was performed using a data management software. Secondly, the developed highway terrain types and land use pattern were related to vehicle speeds and it was found that there were significant statistical differences among vehicle speed for each different terrain and land use pattern. Thirdly. the General Linear Model analysis was employed to analyze the effects of highway geometric features, terrain types, and land use patterns. For two-lane highway and four-lane highway tested in this research project, it was found that R squares were 0.67 and 0.85, respectively. Additionally an optimal highway design speed range table, based on this research project. was proposed for practical use. This table can be reliably used on South Korean national road design, but discretion is required for applying this table to other types of highways including provincial roads and municipal roads.

Development of the Expected Safety Performance Models for Rural Highway Segments (지방부 국도의 사고예측모형 개발에 관한 연구)

  • Oh, Ju-Taek;Kim, Do-Hoon;Lee, Dong-Min
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.131-143
    • /
    • 2012
  • The past researches on roadway segment safety estimation focused on intersections, which are the primary traffic accident regions. The past researches on roadway segments, However, analyzed the effects of certain factors on the traffic accident occurrence rate by organizing the individual geometric structures of the roads, and there is still a dearth of researches on the development of a traffic accident estimation model for rural roadway segments. Therefore, this research focused on rural two-lane and multilane roadway segments and developed traffic accident estimation models through the application of statistical techniques. This is required to explain such high frequency of zero counts in the traffic accident data. In this research, it was found that the Hurdle model is more suitable than the Poisson or negative binomial-regression model for explaining the excess zeros case. In addition, main variables were chosen to estimate their effects on traffic accident occurrence at rural roadway segments, and the safety at such rural roadway segments was estimated. In this research, it was assumed that there are different factors that affect the safety at two-way lane and multilane roadway segments, and a traffic accident estimation model was developed by dividing the two-way lane and multilane roadway segments.

Determination of Deceleration Lane Length in Interchange with Shock-Wave Theory (충격파를 고려한 입체교차로의 감속차로 길이 산정방안)

  • Kim, Jeong-Hyun
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.145-151
    • /
    • 2009
  • Current highway design standards is based on the safety under the free flow condition. The length of deceleration lane is also determined in terms of the deceleration distance which is necessary for the driers to adjust the vehicle speed from the speed limit on the main road to that on the exit ramp of the interchange. However, the queues are frequently developed on the deceleration, and the following vehicles to exit must decelerate on the main road. It may cause delay on the main road and traffic accidents. This study is to suggest a methodology to minimize such problems with the shock-wave theory. The queue length of exiting vehicles can be estimated by the design speeds, traffic volumes of main road and the exiting ramp, and the countermeasures to the operational problems. According to the results, the queue length can be shortened to 80% by upgrading the design speed of exit ramp as the amount of 10km/h. Fifty percent of queue length can be shortened by adding an additional lane on the ramp to two lanes.

  • PDF