• Title/Summary/Keyword: two-hybrid

Search Result 2,996, Processing Time 0.026 seconds

Combining Arbitration with Mediation: Two Cultures of China and Malaysia

  • Chung, Yongkyun
    • Journal of Arbitration Studies
    • /
    • v.26 no.3
    • /
    • pp.149-173
    • /
    • 2016
  • This study vindicates similarities and differences of hybrid process of arbitration and mediation between China and Malaysia. Both countries develop hybrid processes combining arbitration with mediation in their own cultural soils. The Chinese dispute resolver plays the dual role of arbitrator and mediator during the proceedings of hybrid process of arbitration and mediation. On the other hand, a different arbitrator plays the role of mediator, if conciliation fails in Malaysia. On the other hand, judges are allowed to act as mediator during the proceeding in China and Malaysia.

A Study on a Hybrid Genetic Algorithm for the Analysis of Inverse Radiation (역복사 해석을 위한 혼합형 유전 알고리듬에 관한 연구)

  • Kim, Ki-Wan;Baek, Seung-Wook;Kim, Man-Young;Ryou, Hong-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1516-1523
    • /
    • 2003
  • An inverse radiation analysis is presented for the estimation of the boundary emissivities for an absorbing, emitting, and scattering media with diffusely emitting and reflecting opaque boundaries. The finite-volume method is employed to solve the radiative transfer equation for a two-dimensional irregular geometry. A hybrid genetic algorithm is proposed for improving the efficiency of the genetic algorithm and reducing the effects of genetic parameters on the performance of the genetic algorithm. After verifying the performance of the proposed hybrid genetic algorithm, it is applied to inverse radiation analysis in estimating the wall emissivities in a two-dimensional irregular medium when the measured temperatures are given at only four data positions. The effect of measurement errors on the estimation accuracy is examined.

A Small Disk-type Hybrid Self-healing Motor (소형 원판형 하이브리드 자기 부상 모터)

  • ;Yohji Okada
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.8
    • /
    • pp.338-348
    • /
    • 2001
  • A hybrid self-hearing motor, which Is a functional combination of general permanent magnet (PM) motor and hybrid active magnetic bearing(AMB), was proposed a few years ago. In this paper the hybrid self-bearing motor is modified to a disk type, in which one of two magnetic hearings was substituted for a thin yoke to make the system more compact. An outer rotors in this self-hearing motor is actively controlled only in two radial directions while the ocher motions are passively salable owing to the disk-type structure. Main advantages of the proposed self-hearing motor are simple control mechanism, low power consumption and smart structure. Mathematical model for the magnetic force Is built wish consideration of the radial displacement of the rotor. The model helps us not only to design a levitation controller but also to expect the system performance. Some experimental results show good capability and feasibility of the Proposed self-bearing motor.

  • PDF

VARIABLE TIME-STEPPING HYBRID FINITE DIFFERENCE METHODS FOR PRICING BINARY OPTIONS

  • Kim, Hong-Joong;Moon, Kyoung-Sook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.413-426
    • /
    • 2011
  • Two types of new methods with variable time steps are proposed in order to valuate binary options efficiently. Type I changes adaptively the size of the time step at each time based on the magnitude of the local error, while Type II combines two uniform meshes. The new methods are hybrid finite difference methods, namely starting the computation with a fully implicit finite difference method for a few time steps for accuracy then performing a ${\theta}$-method during the rest of computation for efficiency. Numerical experiments for standard European vanilla, binary and American options show that both Type I and II variable time step methods are much more efficient than the fully implicit method or hybrid methods with uniform time steps.

OPTIMAL TORQUE MANAGEMENT STRATEGY FOR A PARALLEL HYDRAULIC HYBRID VEHICLE

  • Sun, H.;Jiang, J.H.;Wang, X.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.791-798
    • /
    • 2007
  • The hydraulic hybrid vehicle(HHV) is an application of hydrostatic transmission technology to improve vehicle fuel economy and emissions. A relatively lower energy density of hydraulic accumulator and complicated coordinating operations between two power sources require a special energy management strategy to maximize the fuel saving potential. This paper presents a new type of configuration for parallel HHV to minimize the disadvantages of the hydraulic accumulator, as well as a methodology for developing an energy management strategy tailored specially for PHHV. Based on an analysis of the optimal energy distribution between two power sources over a representative urban driving cycle with a Dynamic Programming(DP) algorithm, a fuzzy-based optimal torque management strategy is designed and developed to control the torque distribution. Simulation results demonstrates that the optimal torque management strategy maximizes the advantages of this hybrid type of configuration, and the high power density characteristics of hydraulic technology effectively improve the robustness of the energy management strategy and fuel economy of the PHHV.

A Hybrid Data Mining Technique Using Error Pattern Modeling (오차 패턴 모델링을 이용한 Hybrid 데이터 마이닝 기법)

  • Hur, Joon;Kim, Jong-Woo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.4
    • /
    • pp.27-43
    • /
    • 2005
  • This paper presents a new hybrid data mining technique using error pattern modeling to improve classification accuracy when the data type of a target variable is binary. The proposed method increases prediction accuracy by combining two different supervised learning methods. That is, the algorithm extracts a subset of training cases that are predicted inconsistently by both methods, and models error patterns from the cases. Based on the error pattern model, the Predictions of two different methods are merged to generate final prediction. The proposed method has been tested using practical 10 data sets. The analysis results show that the performance of proposed method is superior to the existing methods such as artificial neural networks and decision tree induction.

Seismic response of steel braced frames equipped with shape memory alloy-based hybrid devices

  • Salari, Neda;Asgarian, Behrouz
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.1031-1049
    • /
    • 2015
  • This paper highlights the role of innovative vibration control system based on two promising properties in a parallel configuration. Hybrid device consists of two main components; recentering wires of shape memory alloy (SMA) and steel pipe section as an energy dissipater element. This approach concentrates damage in the steel pipe and prevents the main structural members from yielding. By regulation of the main adjustable design parameter, an optimum performance of the device is obtained. The effectiveness of the device in passive control of structures is evaluated through nonlinear time history analyses of a five-story steel frame with and without the hybrid device. Comparing the results proves that the hybrid device has a considerable potential to mitigate the residual drift ratio, peak absolute acceleration and peak interstory drift of the structure.

Bond Characteristics of Hybrid Fiber Polymer Reinforcing bars with Different Relative Rib Area (하이브리드 FRP 보강근의 상대 리브면적에 따른 부착 특성)

  • Park Ji Sun;You Young Chan;Park Young Hwan;You Young Jun;Kim Hyeong Yeol;Kim Keung Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.201-204
    • /
    • 2005
  • The bond characteristics of two types hybrid FRP (fiber reinforced polymer) reinforcing bars with different rib geometry were analyzed experimentally. Two types of hybrid FRP. reinforcing bars such as spiral and cross type with different relative rib area were considered in this test. All testing procedures including specimens preparation, set-up of test equipments and measuring devices were made according to the recommendations of CSA Standard S806-02. From the test results, it was found' that cross type hybrid FRP reinforcing bars showed the higher bond strength than that of spiral type's due to the higher relative rib area.

  • PDF

A Hybrid Genetic Algorithms for Inverse Radiation Analysis (역복사 해석을 위한 혼합형 유전알고리즘에 관한 연구)

  • Kim, Ki-Wan;Baek, Seung-Wook;Kim, Man-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1639-1644
    • /
    • 2003
  • A hybrid genetic algorithm is developed for estimating the wall emissivities for an absorbing, emitting, and scattering media in a two-dimensional irregular geometry with diffusely emitting and reflecting opaque boundaries by minimizing an objective function, which is expressed by the sum of square errors between estimated and measured temperatures at only four data positions. The finite-volume method was employed to solve the radiative transfer equation for a two-dimensional irregular geometry. The results show that a developed hybrid genetic algorithms reduce the effect of genetic parameters on the performance of genetic algorithm and that the wall emissivities are estimated accurately without measurement errors.

  • PDF

Effects of the Interaction between Intercalant and Matrix Polymer in Preparation of Clay-dispersed Nanocomposite

  • Ko, Moon-Bae;Kim, Jyunkyung;Choe, Chul-Rim
    • Macromolecular Research
    • /
    • v.8 no.3
    • /
    • pp.120-124
    • /
    • 2000
  • Clay-dispersed nanocomposites have been prepared by simple melt-mixing of two components, styrenic polymers with different content of functional groups and two different organophilic clays (Cloisite(R) 25A and Cloisite(R)30A) with a twin screw extruder. Dispersibility of 10-$\AA$-thick silicate layers of clay in the hybrid was investigated by using an X-ray diffraction method and a transmission electron microscope. It was found that if the interaction force between intercalant and matrix polymer is attractive, the matrix polymer intercalates more rapidly into the gallery of silicate layers. The faster intercalation of matrix polymer leads to the better dispersibility of silicate layers in the matrix polymer.

  • PDF