• Title/Summary/Keyword: two-fluid flow

Search Result 1,933, Processing Time 0.032 seconds

Characterization of Interaction between Two Particles/Bubbles Flow with Moving Object Flow Image Analyzer System (MOFIA에 의한 두개 입자/기포간 상호작용에 관한 연구)

  • Choi Hae Man;Monji Hideaki;Matsui Goichi
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.110-116
    • /
    • 2005
  • This paper deals with interaction between two bubbles or particles and flow around them, visualized by a moving object flow image analyzer(MOFIA) consisting of a three-dimensional (3D) moving object image analyzer(MOIA) and two-dimensional particle image velocimetry(PIV). The experiments were carried out for rising bubbles or particles of various densities, sizes, and/or shapes in stagnant water in a vertical pipe. In the MOFIA employed, 3D-MOIA was used to measure particles or bubbles motion and PIV was used to measure fluid flow, The experimental results showed that the interaction was characterized by the shape, size and density of two particles or bubbles.

Chaotic Thermal Convection of a Intermediate Prandtl-Number Fluid in a Horizontal Annulus: Pr=0.2 (수평 환형 공간에서의 중간 Prandtl 수 유체의 혼돈 열대류: Pr=0.2)

  • Yu, Ju-Sik;Kim, Yong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.433-441
    • /
    • 2001
  • Natural convection of a fluid with intermediate Prand시 number of Pr=0.2 in a horizontal annulus is considered, and the bifurcation phenomena and chaotic flows are numerically investigated. The unsteady two-dimensional streamfunction-vorticity equation is solved with finite difference method. The steady downward flow with two counter-rotating eddies bifurcates to a simple periodic flow with a fundamental frequency. And afterwards, second Hopf bifurcation occurs, and a quasi-periodic flow with two incommensurable frequencies appears. However, a new time-periodic flow is established after experiencing quasi-periodic states. As Rayleigh number is increased further, the chaotic flow regime is reached after a sequence of successive Hopf bifurcation to quasi-periodic and chaotic flow regimes. A scenario similar to the Ruelle-Takens-Newhouse scenario of the onset of chaos is observed.

NUMERICAL ANALYSIS OF FLOW AROUND A SUBMERGED BODY NEAR A PYCNOCLINE USING THE GHOST FLUID METHOD ON UNSTRUCTURED GRIDS (비정렬 격자에서 Ghost Fluid 법을 이용한 밀도약층 주위 수중운동체에 의한 유동 해석)

  • Shin, Sang-Mook
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.70-76
    • /
    • 2005
  • A two-layer incompressible time-accurate Euler solver is applied to analyze flow fields around a submerged body moving at a critical speed near a pycnocline. Discontinuities in the dependent variables across the material interface are captured without any dissipation or oscillation using the ghost fluid method on an unstructured grid. It is shown that the material interlace has significant effects on forces acting on a submerged body moving near a pycnocline regardless of the small difference in densities of two layers. Contrary to the shallow water waves, a submerged body can reach a critical speed at very low Froude number due to the small difference in the densities of the two layers.

ANALYTIC EXPRESSION OF HYDRAULIC FALL IN THE FREE SURFACE FLOW OF A TWO-LAYER FLUID OVER A BUMP

  • Park, Jeong-Whan;Hong, Bum-Il;Ha, Sung-Nam
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.2
    • /
    • pp.479-490
    • /
    • 1997
  • We consider long nonlinear waves in the two-layer flow of an inviscid and incompressible fluid bounded above by a free surface and below by a rigid boundary. The flow is forced by a bump on the bottom. The derivation of the forced KdV equation fails when the density ratio h and the depth ratio $\rho$ yields a condition $1 + h\rho = (2-h)((1-h)^2 + 4\rho h)^{1/2}$. To overcome this difficulty we derive a forced modified KdV equation by a refined asymptotic method. Numerical solutions are given and hydraulic fall solution of a two layer fluid is expressed analytically in the case that derivation of the forced KdV (FKdV) equation fails.

  • PDF

Hall Effect on Couette Flow with Heat Transfer of a Dusty Conducting Fluid Between Parallel Porous Plates Under Exponential Decaying Pressure Gradient

  • Attia Hazem A.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.569-579
    • /
    • 2006
  • In the present study, the unsteady Couette flow with heat transfer of a dusty viscous incompressible electrically conducting fluid under the influence of an exponential decaying pressure gradient is studied without neglecting the Hall effect. The parallel plates are assumed to be porous and subjected to a uniform suction from above and injection from below while the fluid is acted upon by an external uniform magnetic field is applied perpendicular to the plates. The governing equations are solved numerically using finite differences to yield the velocity and temperature distributions for both the fluid and dust particles.

Flowfield Calculation around Two Circular Cylinders by a Discrete Vortex Method (이산와법에 의한 2원주 주위의 유동장 수치계산)

  • Ro Ki-Deok;Kang Ho-Keun;Choi Hyeong-Doo
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.345-348
    • /
    • 2002
  • The Flow patterns around two cylinders in various arrangements were studied by a discrete vortex method. The flow for the surface of each cylinder was represented by arranging bound vortices at adequate intervals. The viscous diffusion of fluid was represented by the random walk method. The vortex distributions, streaklines, timelines and velocity vectors around two cylinders were calculated for centre-to-centre pitch ratios of $P/D=1.5 and 2.5$, attack angles of ${\alpha}=0^{\circ},\;30^{\circ},\;60^{\circ}\;and\;90^{\circ}$, and Reynolds number of Re=1200. The results of simulation correspond to the photographs by flow visualization and the flow intereference between two cylinders in various arrangements was clearly visualized by a numerical simulation.

  • PDF

A Flowfield Calculation around Two Circular Cylinders in Various Arrangements by a Discrete Vortex Method (이산와법에 의한 다양한 배열에서 2원주 주위의 유동장 계산)

  • 노기덕;박지태;강호근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.365-372
    • /
    • 2003
  • The Flow patterns around two cylinders in various arrangements were studied by a discrete vortex method. The flow for the surface of each cylinder was represented by arranging bound vortices at adequate intervals. The viscous diffusion of fluid was represented by the random walk method. The vortex distributions. streaklines. timelines and velocity vectors around two cylinders were calculated for centre-to-centre pitch ratios of P/D=1.5 and 2.5, attack ang1es of $a=0^{circ}, 30^{circ}, 60^{circ} and 90^{\circ}$. and Reynolds number of Re= 1200. The results of simulation correspond to the photographs by flow visualization and the flow intereference between two cylinders in various arrangements were clearly visualized by a numerical simulation.

Visualization of flowfield around Two Circular Cylinders by a Discrete Vortex Method (이산와법에 의한 2원주 주위의 유동장 가시화)

  • Ro Ki-Deok;Lee Young-Hoon;Son Yeong-Tae
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.63-66
    • /
    • 2002
  • The Flow patterns around two cylinders in various arrangements were studied by a discrete vortex method. The flow for the surface of each cylinder was represented by arranging bound vortices at adequate intervals. The viscous diffusion of fluid was represented by the random walk method. The vortex distributions, streaklines, timelines and velocity vectors around two cylinders were calculated for centre-to-centre pitch rations of P/D=1.5 and 2.5, attack angles of $\alpha=0^{\circ},\;30^{\circ},\;60^{\circ},\;and\;90^{\circ}$, correspond to the photographs by flow visualization and the flow intereference between two cylinders in var ious arrangements was clearly visualized by a numerical simulation.

  • PDF

Internal Flow of a Two-Bladed Helical Inducer at an Extremely Low Flow Rate

  • Watanabe, Satoshi;Inoue, Naoki;Ishizaka, Koichi;Furukawa, Akinori;Kim, Jun-Ho
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.2
    • /
    • pp.129-136
    • /
    • 2010
  • The attachment of inducer upstream of main impeller is an effective method to improve the suction performance of turbopump. However, various types of cavitation instabilities are known to occur even at the designed flow rate as well as in the partial flow rate region. The cavitation surge occurring at partial flow rates is known to be strongly associated with the inlet back flow. In the present study, in order to understand the detailed structure of internal flow of inducer, we firstly carried out the experimental and numerical studies of non-cavitating flow, focusing on the flow field near the inlet throat section and inside the blade passage of a two bladed inducer at a partial flow rate. The steady flow simulation with cavitation model was also made to investigate the difference of flow field between in the cavitating and no-cavitating conditions.

Modeling of Nozzle Flow Inside a Y-JET Twin-Fluid Atomizer (Y-JET 2-유체 분무노즐 내부유동의 모델링)

  • In, Wang-Kee;Lee, Sang-Yong;Song, Si-Hong
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1841-1850
    • /
    • 1993
  • A simplified one-dimensional analysis has been performed to predict the local pressure distributions in Y-Jet twin-fluid atomizers. Fluid compressibility was considered both in the gas(air) and two-phase(mixing) ports. The annular-mist flow model was adopted to analyze the flow in the mixing port. A series of experiments also has been performed; the results show that the air flow rate increases and the liquid flow rate decreases with the increase of the air injection pressure and/or with the decrease of the liquid injection pressure. From the measured injection pressures and flow rates, the appropriate constants for the correlations of the pressure loss coefficients and the rate of drop entrainment were decided. The local pressures inside the nozzle by prediction reasonably agree with those by the experiments.