• Title/Summary/Keyword: two-fluid equation

Search Result 421, Processing Time 0.026 seconds

Dynamic response of a base-isolated CRLSS with baffle

  • Cheng, Xuansheng;Liu, Bo;Cao, Liangliang;Yu, Dongpo;Feng, Huan
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.411-421
    • /
    • 2018
  • Although a rubber isolation cushion can reduce the dynamic response of a structure itself, it has little influence on the height of a sloshing wave and even may induce magnification action. Vertical baffles are set into a base-isolated Concrete Rectangular Liquid Storage Structure (CRLSS), and baffles are opened as holes to increase the energy dissipation of the damping. Problems of liquid nonlinear motion caused by baffles are described using the Navier-Stokes equation, and the space model of CRLSS is established considering the Fluid-Solid Interaction (FSI) based on the Finite Element Method (FEM). The dynamic response of an isolated CRLSS with various baffles under an earthquake is analyzed, and the results are compared. The results show that when the baffle number is certain, the greater the number of holes in baffles, the worse the damping effects; when a single baffle with holes is set in juxtaposition and double baffles with holes are formed, although some of the dynamic response will slightly increase, the wallboard strain and the height of the sloshing wave evidently decrease. A configuration with fewer holes in the baffles and a greater number of baffles is more helpful to prevent the occurrence of two failure modes: wallboard leakage and excessive sloshing height.

Effect of Rear-Vortex of a Convergent-Divergent Duct on the Flow Acceleration Installed in a Vertical Structure (수직구조물 후방의 와류현상이 구조물에 설치된 벤투리관의 유체가속 효과에 미치는 영향에 관한 해석 연구)

  • Chung, Kwang-Seop;Kim, Chul-Ho;Cho, Hyun-Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.2
    • /
    • pp.94-100
    • /
    • 2013
  • A convergent-divergent nozzle or venturi nozzle has been used to accelerate the wind speed at its throat. The wind speed at the throat is inversely proportional to its area according to the continuity equation. In this numerical study, an airflow phenomena in the venturi system placed at a vertical structure was investigated to understand the vortex effect occurred at the rear-side of the vertical structure on the air speed increment at the throat of the venturi system. For this study, a venturi system sized by $20(m){\times}20(m){\times}6(m)$ was modelled and the area ratio(AR) of the model venturi was 2.86. To see the vortex effect on the air flow acceleration in the venturi throat, two different boundary conditions was defined From the study, it was found that the pressure coefficient(CP) of the venturi system with the vortex formed at the exit of the venturi was about 2.5times of the CP of the venturi system without the vortex effect. The velocity increment rate of the venturi system with the vortex was 61% but 9.5% only at the venturi system without the vortex. Conclusively, it can be said that the venturi system installed in a vertical structure has very positive effect on the flow acceleration at its throat due to the vortex formed at the rear-side of the vertical structure.

Nonlinear Interaction between the Permeable Submerged Breakwater and Third Order Stokes Waves (사석잠제와 Stokes 3차파와의 비선형간섭에 관한 연구)

  • Jeong, Yeon-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.223-234
    • /
    • 1998
  • Recently, the interests of the construction of the permeable submerged breakwaters have been increased to preserve and to improve the coastal environment, and to control the incident waves and littoral transport. It is very important to predict the wave transformation precisely over the permeable submerged breakwaters. This study discusses nonlinear wave transformation and characteristics by using BEM based on the frequency domain method of the 3rd-order Stokes waves. The Dupuit-Forchheimer formula is applied to the analysis of the fluid resistance of rubble stones, and the equation about equivalent linear frictional coefficient is newly modified based on the Lorentz's condition for the equivalent work. The numerical results are compared with the experimental ones for verification. These two results give a close agreement each other. It is confirmed that the present method of the 3rd-order Stokes waves estimates more precisely than that of the 2nd-order Stokes waves.

  • PDF

A Framework for 2D Cohesive Sediment Transport Modeling (2차원 점착성 유사 이동 모형에 관한 Framework)

  • Byun, Jisun;Son, Minwoo;Park, Byeoung Eun;Moon, Hyejin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.292-292
    • /
    • 2017
  • 하천에서 주로 부유사의 형태로 이송되는 유사는 크게 점착성 유사와 비점착성 유사로 구분된다. 입자의 크기가 약 $63{\mu}m$이하인 유사는 입자 표면의 전자기적 점착력의 영향이 우세하여 유사입자들은 지속적인 응집현상을 겪는다. 응집 현상을 통해 유사의 가장 단위인 일차입자(Primary Particle)들은 하나의 커다란 덩어리인 플럭(Floc)을 형성한다. 응집현상이 중요한 이유는 형성된 플럭의 크기 및 밀도가 끊임없이 변화하는 데 있다. 크기와 밀도의 지속적인 변화로 인하여 유사의 부유에 직접적으로 관계하는 침강속도가 변화한다. 우리나라의 금강 및 낙동강의 하구는 점착성 유사가 지배적인 환경으로, 하구에서의 유사 이동을 살펴보기 위해서는 흐름 방향 및 연직방향으로의 흐름 특성(Hydrodynamics)변화와 응집 모형을 통한 응집 현상의 고려가 필수적이다. 이에따라, 본 연구에서는 흐름 방향 및 연직방향으로의 2차원 점착성 유사 이동모형에 관한 개념적 틀(Framework)을 제시한다. 2차원 점착성 유사 이동 모형의 개념적 틀은 기존의 1차원 연직 점착성 유사 이동 모형을 근간으로 한다. 모형에서 흐름을 구성하는 지배 방정식은 오일러-오일러 이상방정식(Eulerian-Eulerian Two-Phase Equation)을 통해 얻는다. 유사상(Sediment Phase, Dispersed Phase)와 유체상(Fluid Phase, Continuous Phase)는 혼합물 이론(Mxiture Theory)를 통해 하나의 혼합물 상(Mixture Phase)의 지배방정식으로 대표된다. 난류의 계산은 와점성 모형 중 -${\varepsilon}$모형을 통해 수행되며, 부유사의 농도는 유사의 이송-확산 방정식을 통해 모의된다. 입력된 흐름 조건을 따라 초기 흐름이 모의되면, 유체 내에서 시간에 따른 플럭의 크기가 계산된다. 플럭의 크기가 계산되는 과정에서 밀도와 침강 속도가 계산되며, 그 이후에 유체 내 유사의 농도가 계산된다. 난류 모의가 수행되고 난 이후에, 유속이 재계산 된다. 이러한 과정을 통해 흐름 방향 및 연직 방향으로의 유사 이동 모의가 가능한 2차원 점착성 유사 이동 모형이 개발될 수 있을 것이라고 생각된다.

  • PDF

Numerical Simulation on the Formation and Pinching Plasma in X-pinch Wires on 2-D Geometry (자기유체역학 코드를 이용한 축 대칭 엑스 핀치 플라즈마 구조의 2차원 전산해석)

  • Byun, Sangmin;Na, Yong-Su;Chung, Kyoung-Jae;Kim, Deok-Kyu;Lee, Sangjun;Lee, Chanyoung;Ham, Seunggi;Ryu, Jonghyeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.211-218
    • /
    • 2021
  • This paper deals with the computational work to characterize the formation and pinching of a plasma in an X-pinch configuration. A resistive magnetohydrodynamic model of a single fluid and two temperature is adopted assuming a hollow conical structure in the (r,z) domain. The model includes the thermodynamic parameter of tungsten from the corrected Thomas-Fermi EOS(equation of state), determining the average ionization charge, pressure, and internal energy. The transport coefficients, resistivity and thermal conductivity, are obtained by the corrected Lee & More model and a simple radiation loss rate by recombination process is considered in the simulation. The simulation demonstrated the formation of a core-corona plasma and intense compression process near the central region which agrees with the experimental observation in the X-pinch device at Seoul National University. In addition, it confirmed the increase in radiation loss rate with the density and temperature of the core plasma.

FORMATION AND EVOLUTION OF SELF-INTERACTING DARK MATTER HALOS

  • AHN KYUNGJIN;SHAPIRO PAUL R.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.89-95
    • /
    • 2003
  • Observations of dark matter dominated dwarf and low surface brightness disk galaxies favor density profiles with a flat-density core, while cold dark matter (CDM) N-body simulations form halos with central cusps, instead. This apparent discrepancy has motivated a re-examination of the microscopic nature of the dark matter in order to explain the observed halo profiles, including the suggestion that CDM has a non-gravitational self-interaction. We study the formation and evolution of self-interacting dark matter (SIDM) halos. We find analytical, fully cosmological similarity solutions for their dynamics, which take proper account of the collisional interaction of SIDM particles, based on a fluid approximation derived from the Boltzmann equation. The SIDM particles scatter each other elastically, which results in an effective thermal conductivity that heats the halo core and flattens its density profile. These similarity solutions are relevant to galactic and cluster halo formation in the CDM model. We assume that the local density maximum which serves as the progenitor of the halo has an initial mass profile ${\delta}M / M {\propto} M^{-{\epsilon}$, as in the familiar secondary infall model. If $\epsilon$ = 1/6, SIDM halos will evolve self-similarly, with a cold, supersonic infall which is terminated by a strong accretion shock. Different solutions arise for different values of the dimensionless collisionality parameter, $Q {\equiv}{\sigma}p_br_s$, where $\sigma$ is the SIDM particle scattering cross section per unit mass, $p_b$ is the cosmic mean density, and $r_s$ is the shock radius. For all these solutions, a flat-density, isothermal core is present which grows in size as a fixed fraction of $r_s$. We find two different regimes for these solutions: 1) for $Q < Q_{th}({\simeq} 7.35{\times} 10^{-4}$), the core density decreases and core size increases as Q increases; 2) for $Q > Q_{th}$, the core density increases and core size decreases as Q increases. Our similarity solutions are in good agreement with previous results of N-body simulation of SIDM halos, which correspond to the low-Q regime, for which SIDM halo profiles match the observed galactic rotation curves if $Q {\~} [8.4 {\times}10^{-4} - 4.9 {\times} 10^{-2}]Q_{th}$, or ${\sigma}{\~} [0.56 - 5.6] cm^2g{-1}$. These similarity solutions also show that, as $Q {\to}{\infty}$, the central density acquires a singular profile, in agreement with some earlier simulation results which approximated the effects of SIDM collisionality by considering an ordinary fluid without conductivity, i.e. the limit of mean free path ${\lambda}_{mfp}{\to} 0$. The intermediate regime where $Q {\~} [18.6 - 231]Q_{th}$ or ${\sigma}{\~} [1.2{\times}10^4 - 2.7{\times}10^4] cm^2g{-1}$, for which we find flat-density cores comparable to those of the low-Q solutions preferred to make SIDM halos match halo observations, has not previously been identified. Further study of this regime is warranted.

The Effects of Barley Tea Concentration and Atomizing Pressure on the Atomization with Two Fluid Nozzle Spray Gun (이류식(二流式) 노즐에서 보리차 추출액(抽出液)의 농도(濃度) 및 분무(噴霧) 압력(壓力)이 분무화(噴霧化)에 미치는 영향(影響))

  • Lee, Jeong-Cheol;Chun, Jae-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.342-347
    • /
    • 1983
  • The effects of barley tea concentration and atomizing air pressure on the size, homogeneity and distribution of the sprayed droplets were investigated. An equation relating mean diameter (${\overline{D}}$) with the concentration where the coefficient a and b were determined empirically. As the operating air pressure was increased, the mean diameter of the droplets decreased and finally reached the limiting mean diameter, $36{\mu}m$ at 15.7% barley tea concentration. The homogeneity of the droplets increased with the operating air pressure, increase and it was decreased steadily as the soluble solid concentration increased up to 20% and markedly over 20% at every operating air pressure. The distribution ($P_D$) of sprayed droplets related with the droplet size as the following exponential equation; $P_D$ = e 1nD + f where e and f are empirical constants.

  • PDF

Numerical and experimental investigations on the aerodynamic and aeroacoustic performance of the blade winglet tip shape of the axial-flow fan (축류팬 날개 끝 윙렛 형상의 적용 유무에 따른 공기역학적 성능 및 유동 소음에 관한 수치적/실험적 연구)

  • Seo-Yoon Ryu;Cheolung Cheong;Jong Wook Kim;Byeong Il Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.103-111
    • /
    • 2024
  • Axial-flow fans are used to transport fluids in relatively low-pressure flow regimes, and a variety of design variables are employed. The tip geometry of an axial fan plays a dominant role in its flow and noise performance, and two of the most prominent flow phenomena are the tip vortex and the tip leakage vortex that occur at the tip of the blade. Various studies have been conducted to control these three-dimensional flow structures, and winglet geometries have been developed in the aircraft field to suppress wingtip vortices and increase efficiency. In this study, a numerical and experimental study was conducted to analyze the effect of winglet geometry applied to an axial fan blade for an air conditioner outdoor unit. The unsteady Reynolds-Averaged Navier-Stokes (RANS) equation and the FfocwsWilliams and Hawkings (FW-H) equation were numerically solved based on computational fluid dynamics techniques to analyze the three-dimensional flow structure and flow noise numerically, and the validity of the numerical method was verified by comparison with experimental results. The differences in the formation of tip vortex and tip leakage vortex depending on the winglet geometry were compared through a three-dimensional flow field, and the resulting aerodynamic performance was quantitatively compared. In addition, the effect of winglet geometry on flow noise was evaluated by numerically simulating noise based on the predicted flow field. A prototype of the target fan model was built, and flow and noise experiments were conducted to evaluate the actual performance quantitatively.

IP Modeling and Inversion Using Complex Resistivity (복소 전기비저항을 이용한 IP 탐사 모델링 및 역산)

  • Son, Jeong-Sul;Kim, Junhg-Ho;Yi, Myeong-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.2
    • /
    • pp.138-146
    • /
    • 2007
  • This paper describes 2.5D induced polarization (IP) modeling and inversion algorithms using complex resistivity. The complex resistivity method has merits for acquiring more valuable information about hydraulic parameters and pore fluid than the conventional IP methods. The IP modeling and inversion algorithms are developed by allowing complex arithmetic in existing DC modeling and inversion algorithms. The IP modeling and inversion algorithms use a 2.5D DC finite-element algorithm and a damped least-squares method with smoothness constraints, respectively. The accuracy of the IP modeling algorithm is verified by comparing its responses of two synthetic models with two different approaches: linear filtering for a three-layer model and an integral equation method for a 3D model. Results from these methods are well matched to each other. The inversion algorithm is validated by a synthetic example which has two anomalous bodies, one is more conductive but non-polarizable than the background, and the other is polarizable but has the same resistivity as the background. From the inverted section, we can cleary identify each anomalous body with different locations. Furthermore, in order to verify its efficiency to the real filed example, we apply the inversion algorithm to another three-layer model which includes phase anomaly in the second layer.

A Study on Flow Distribution in a Clean Room with Multiple Exits (다수의 출구를 가지는 크린룸 내부의 기류분포에 관한 연구)

  • Lee, Jae-Heon;Lee, Sie-Un;Kim, Sukhyun
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.418-425
    • /
    • 1988
  • Since conventional computer program is workable only with velocity boundary condition, in practical fluid passage such as clean room which usually have wide inlets and outlets, it is not easy to measure velocity itself because of its vector property. Furthermore a certain assumption of velocity at boundaries may lead to physically unreasonable results. From this motivation, we have developed a computer program to predict whole flow field imposed on pressure-based boundary condition which can be measured by relatively simple method. The only additional velocity boundary condition that should be imposed on to make the problem unique, are no slip condition at all walls and zero cross stream velocity at inlet. The result of present study was compared with that by Bernoulli equation being used practically. They were coincident well each other within 5%, therefore the validity of the present method is proved. In the present work, the flow field in a clean room subject to pressure-based boundary conditions at an inlet and two exits was predicted numerically. The pressure difference between the inlet and the left exit which keeps relatively low pressure among two exits is fixed as 150[Pa] and the pressure at the right exit is varied from zero to 150[Pa] by the increment of 25[Pa]. For each cases the flow characteristics in the clean room, the velocity profile at the inlet, and the flow rate through the two exits was predicted. The flow rate through the right exit imposed on relatively higher pressure than the left exit decreased linearly according to the increase of pressure of the right exit. When the pressure of the right exit is increased enough to cause back flow at the exit, the flow rate is rapidly decreased.

  • PDF