• Title/Summary/Keyword: two-dimensional shapes

Search Result 360, Processing Time 0.026 seconds

Studies on the Bladder Worm, Cysticercus cellulosae -The Ulrastructure of C. cellulosae- (유구낭모충에 관한 연구 -유구낭모충의 미세구조-)

  • 이순형
    • Parasites, Hosts and Diseases
    • /
    • v.21 no.1
    • /
    • pp.75-82
    • /
    • 1983
  • An electron microscopic study was performed to know the basic tegumental structure of Cysticercus cellulosae. The scolex and bladder portions of cysticerci (human and porcine strains) were prepared for transmission and scanning electron microscopy by conventional procedures. In general, the tegument of C. cellulosae showed the basic ultrastructure of cestode tegument on electron micrographs. The teguments of both scolex and bladder portions consisted of such components, i.e., an outer vesicular layer with numerous microtriches and inner filroug layer. Below the fibrous layer, there were layers of muscle bundles and tegumental cells. The microtriches which covered the surface of cysticercus revealed two distinctly different shapes. The characteristic bladder-like, elongated pyramid shaped "tetrahedrial form" was observed on the surface of the scolex portion, whereas the elongated cylindrical "filamentous form" was distributed on the stirface of bladder portion. In spite of the difference of isolated host and location, the cysticerci showed tole same result. But dimensional variations of the tegument according to topography of the worm were observed. The possibility of application in making differential diagnosis from other larval cestodes and possible functions of this larval tegument were discussed.

  • PDF

A Study on the Prediction Technical for Critical Slip surface Using Genetic Algorithm (유전자 알고리즘을 이용한 사면의 임계파괴면 예측기법에 관한 연구)

  • 김홍택;강인규;황정순;장원호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.331-338
    • /
    • 1999
  • In the present study, a searching technique for critical slip surface in two dimensional slope stability analysis is proposed. The failure surface generation and analysis has been usually limited to simple geometric shapes. However, more random surfaces need to be examined for some particular ground conditions. For this purpose, random searching technique is developed using genetic algorithm. The generalized limit equilibrium method is employed as the method of stability analysis. Using this technique, the factor of safety is compared with the result by using simplified Bishop's method. In addition, the convergent trend of fitness value is analyzed.

  • PDF

Flow and Heat Transfer Characteristics of Tube-and-Plate Condenser with Different Plate Shapes and Inlet Geometries using Numerical Analysis (수치해석에 의한 TUBE-AND-PLATE형 응축기의 판 형태 및 입구 형상변화에 따른 유동 및 열전달 특성)

  • Choi, W.J.;Kwon, O.B.;Lim, H.C.;Kim, M.K.;Lee, Y.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.2
    • /
    • pp.49-55
    • /
    • 2009
  • Recently, a study on condensers for refrigerators has focused on new model which will cost less and will be more efficient. Some widely used condensers for domestic refrigerators are wire-and-tube type condenser, hot-wall type condenser, and spiral type condenser. Some companies which use the spiral type condenser at the moment try to develop a new tube-and-plate type condenser which will cost less and will be as efficient as the spiral type. As a standard condenser type, tube-and-plate type condenser is used in this study. A two-dimensional numerical model for the tube-and-plate type condenser is proposed, and the flow and heat transfer characteristics for several types of condensers are investigated.

  • PDF

Fuzzy Mean Method with Bispectral Features for Robust 2D Shape Classification

  • Woo, Young-Woon;Han, Soo-Whan
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.313-320
    • /
    • 1999
  • In this paper, a translation, rotation and scale invariant system for the classification of closed 2D images using the bispectrum of a contour sequence and the weighted fuzzy mean method is derived and compared with the classification process using one of the competitive neural algorithm, called a LVQ(Learning Vector Quantization). The bispectrun based on third order cumulants is applied to the contour sequences of the images to extract fifteen feature vectors for each planar image. These bispectral feature vectors, which are invariant to shape translation, rotation and scale transformation, can be used to represent two-dimensional planar images and are fed into an classifier using weighted fuzzy mean method. The experimental processes with eight different shapes of aircraft images are presented to illustrate the high performance of the proposed classifier.

  • PDF

Advanced flutter simulation of flexible bridge decks

  • Szabo, Gergely;Gyorgyi, Jozsef;Kristof, Gergely
    • Coupled systems mechanics
    • /
    • v.1 no.2
    • /
    • pp.133-154
    • /
    • 2012
  • In this paper a bridge flutter prediction is performed by using advanced numerical simulation. Two novel approaches were developed simultaneously by utilizing the ANSYS v12.1 commercial software package. The first one is a fluid-structure interaction simulation involving the three-dimensional elastic motion of a bridge deck and the fluid flow around it. The second one is an updated forced oscillation technique based on the dynamic mode shapes of the bridge. An aeroelastic wind tunnel model was constructed in order to validate the numerical results. Good agreement between the numerical results and the measurements proves the applicability of the novel methods in bridge flutter assessment.

Elastica Solution of Large Deformation of Fiber Cantilever with Crimped Shapes (크림프를 가진 섬유 캔틸레버의 대변형의 일래스티카 해)

  • 정재호;강태진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.102-105
    • /
    • 2001
  • In this paper, the solution of two dimensional deflection of circular wavy elastica beam was obtained for one end clamped boundary and concentrated load condition. The beam was regarded as a linear elastic material. Wavy shape was described as a combination of half-circular arc smoothly connected each other with constant curvature of all the same magnitude and alternative sign. Also load direction was taken into account. As a result, the solution was expressed in terms of a series of integral equations. While we found the exact solutions and expressed them in terms of elliptic integrals, the recursive ignition formulae about the displacement and arc length at each segment of circular section were obtained. Algorithm of determining unknown parameters was established and the profile curve of deflected beam was shown compared with initial shape.

  • PDF

Comparison of Performance between Symmetric Trapezoidal Fins and Asymmetric Trapezoidal Fins (대칭 사다리꼴 핀과 비대칭 사다리꼴 핀의 성능 비교)

  • Kang, Hyungsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.205-213
    • /
    • 2016
  • Heat loss and fin efficiency of symmetric and asymmetric trapezoidal fins with variable slope of fin's top surface are obtained by using a two-dimensional analytic method. Shapes of symmetric and asymmetric fins are changed from rectangular through trapezoidal to triangular by adjusting the fin shape factor. The ratio of symmetric trapezoidal fin length to asymmetric trapezoidal fin length is presented as a function of fin base height and convection characteristic number. The ratio of symmetric trapezoidal fin efficiency to asymmetric trapezoidal fin efficiency is presented as a function of the fin base height and fin shape factor. One of results shows that asymmetric trapezoidal fin length is shorter than symmetric trapezoidal fin length (i.e., asymmetric trapezoidal fin volume is smaller than symmetric trapezoidal fin volume) for the same heat loss when the fin base height and fin shape factor are the same.

Dynamic analysis of the floor structures with different floor plans in apartments (아파트 평면형상에 따른 바닥판의 동특성 해석)

  • Yoo, Seung-Yup;Lee, Pyoung-Jik;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1459-1462
    • /
    • 2007
  • In this study, vibration characteristics of concrete slab were investigated through FEM analysis. Four different floor plans with the floor area of $100{\sim}130m^2$ were chosen to be analyzed. Boundary conditions of two dimensional finite element models were determined based on the modal test results. Results showed that mode shapes were formed somewhat different according to the floor plan and the contribution of 1st mode on the floor vibration is generally the highest. Through the transient analysis, it was also found that floor plan, expecially connection of the living room with the kitchen, affected the vibration acceleration levels.

  • PDF

Tetrahedral Mesh Generation from CT Images of Thoracic Vertebra (흉추 CT 영상으로부터 사면체 요소망의 자동생성)

  • 박정민;권기환;전성재;채수원;이관행;이태수;서중근;박정율
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.150-153
    • /
    • 2002
  • The use of the finite element method for biomechanical analysis is increasing rapidly in recent years. Since biomechanical models are usually in very complex shapes, it takes a lot of time and efforts to build reasonable finite element models. In this paper, a new tetrahedral meshing algorithm from the series of 2-D computed tomography(CT) images has been proposed. In this scheme, the planar sections of three-dimensional objects and the side surfaces between two planar sections are triangulated first, and then an advancing front algorithm is employed to construct tetrahedral elements by using basic operators. A sample finite element model for thoracic vertebra is presented.

  • PDF

An Optimum 2.5D Contour Parallel Tool Path

  • Kim, Hyun-Chul;Yang, Min-Yang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.16-20
    • /
    • 2007
  • Although conventional contour parallel tool paths obtained from geometric information have successfully been used to produce desired shapes, they seldom consider physical process concerns such as cutting forces and chatter. In this paper, we introduce an optimized contour parallel path that maintains a constant material removal rate at all times. The optimized tool path is based on a conventional contour parallel tool path. Additional tool path segments are appended to the basic path to achieve constant cutting forces and to avoid chatter vibrations over the entire machining area. The algorithm was implemented for two-dimensional contiguous end milling operations with flat end mills, and cutting tests were conducted to verify the performance of the proposed method.