• Title/Summary/Keyword: two-dimensional river model

Search Result 184, Processing Time 0.024 seconds

Three-Dimensional Mixing Characteristics in Seomjin River Estuary (섬진강 하구역의 3차원 혼합특성 연구)

  • Kim, Jong-Kyu;Kwak, Gyeong-Il;Jeong, Jeong-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.3
    • /
    • pp.164-174
    • /
    • 2008
  • In this study we try to identify the three-dimensional mixing characteristics of Seomjin River discharges in Seomjin River Estuary and Gwangyang Bay using a seasonal field observation (CTD) during spring tide and a three-dimensional numerical model with EFDC (Environmental Fluid Dynamics Code). The tidal elevation conditions of the four main tidal harmonic constituents on the open boundary and river discharges and thermal effluents at the specific boundary are considered. The calculated harmonic constants of tide and tidal current agreed well with those of observations at two stations for tide and two stations for tidal current. The model successfully reproduced well known the estuarine circulation in Seomjin River Estuary where tide and river discharges are dominant forcings. In the winter mean discharges case, tidal currents move Seomjin River discharges in Seomjin River mouth and in the summer mean discharges case, river flows move Seomjin River discharges near ae Seomjin River Estuary. A three-dimensional mixing characteristics of Seomjin River Estuary show well a three-dimensional estuarine circulation and thermal effluents effect to the seasonal variation of river discharges.

  • PDF

Two-dimensional Numerical Modeling of Water Quality Variation by Gates Operation in the Seonakdong River (수문운영에 따른 서낙동강 수질변화에 관한 이차원 수치모의)

  • Lee, Namjoo;Kim, Young Do;Kwon, Jae Hyun;Shin, Chan Ki
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.101-112
    • /
    • 2007
  • This study has used RMA2 model and RMA4 model, which are depth-averaged two-dimensional flow and water-quality prediction models, to analyze the variation of the water-quality by the gates operation in the Seonakdong River. Sensitivity analysis is performed to get the Manning coefficient and the coefficient of eddy viscosity for RMA2 model, and to get the diffusion coefficient for RMA4 model. Since the numerical simulation using RMA2 and RMA4 models did not consider tributary pollutant load except for that of Joman River, it could make a little difference from the natural phenomenon. Nevertheless, the numerical simulation shows that the discharge of $30m^3/s$, which is the continuous inflow from the Daedong-gate, can make it possible to achieve the target water-quality (BOD 4.3mg/L) of Nakbon-N watershed about 10 days later if the Daejeo-gate could remain opened in connection with the Noksan-gate operation.

Sensitive analysis of river geometry under various flow conditions in South Han River using GSTARS model (GSTARS 모형을 이용한 한강 상류부에서 유량변동에 따른 하상변동 민감도 분석)

  • Ahn, Jungkyu;Lee, Jong Mun;Kim, Young Do;Kang, Boosik
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.347-359
    • /
    • 2016
  • Flow input from the basin will not remain the same as before due to climate changes. Since the predictions on river discharge due to climate change is given by scenarios, various discharge scenarios were prepared in this study. For a long term and reach prediction, semi-two dimensional sediment transport model, GSTARS, was used. The flood water surface elevations predicted by GSTARS model were analysed statistically and it was concluded that the model is applicable for the South Han River. Three stream tubes is the most suitable to simulate two dimensional river geometric change River geometric changes. For sediment load computation, Ackers and White equation and Yang equation were resonable. River will become narrower regardless of discharge variation, more discharge results in deeper channel.

Development of Dry/Wet Algorithm for 2-Dimensional Flow Analysis (2차원 흐름해석을 위한 마름/젖음 알고리듬의 개발)

  • Kim, Sang-Ho;Han, Kun-Yeun;Choi, Seung-Yong;Oh, Hyun-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.624-628
    • /
    • 2008
  • Two-dimensional flow analysis is a way to provide good estimates for complex flow features in flow around islands and obstructions, flow at confluence and flow in braided channel. One of difficult problems to develop a two-dimensional hydraulic model is to analyze dry and wet area in river channel. Dry/wet problem can be encountered in river and coastal engineering problems, such as flood propagation, dam break analysis, tidal processes and so on. The objective of this study is to develop an accurate and robust two-dimensional finite element method with dry/wet technique in complex natural rivers. The dry/wet technique with Deforming Grid Method was developed in this study. The Deforming Grid Method was used to construct new mesh by eliminating of dry nodes and elements. The eliminated nodes and elements were decided by considering of the rising/descending velocity of water surface elevation. Several numerical simulations were carried out to examine the performance of the Deforming Grid Method for the purpose of validation and verification of the model in rectangular and trapezoidal channel with partly dry side. The application results of the model were displayed reasonable flow distribution.

  • PDF

Development of response terms for contaminant transport in two-dimensional model for mixing analysis of toxic chemicals in rivers (하천에 유입된 유해화학물질의 혼합 해석을 위한 2차원 오염물질 이동모형 반응항 개발)

  • Shin, Dongbin;Shin, Jaehyun;Seo, Il Won
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.2
    • /
    • pp.141-154
    • /
    • 2020
  • The accidents of toxic chemical spill into rivers are increasing in recent years due to expansion of heavy industries in Korea. In order to respond to the chemical spills, accident response systems have been established for both main rivers and tributary rivers. However, since these accident response system adopted the water quality models imported from the foreign countries, it is difficult to acquire the model parameters and to calibrate and validate the water quality models. Therefore, this study developed a depth-averaged two-dimensional river water quality model to analyze the behavior of hazardous chemicals in rivers and proposed an efficient simulation execution framework by identifying the significant reaction mechanisms considering the characteristics of the toxic chemicals. The depth-averaged two-dimensional river water quality model CTM-2D was upgraded by adding reaction terms representing mechanisms of the adsorption, desorption, and volatilization of toxic chemicals. In order to verify the model, the analytical solution was compared with the numerical solution, and results showed that the error was less than 0.1%. In addition, the model was applied to a virtual scenario which is a water pollution accident at the confluence of the Nakdong River - Kumho River, and model results showed that an efficient simulation could be carried out by activating only significant reactions which were assessed by the sensitivity analysis.

Prediction of Water-Quality Enhancement Effects of Gates Operation in the West-Nakdong River Using RMA2/RMA4 Models (RMA2/RMA4 모형을 이용한 서낙동간 수문연계운영의 수질개선 효과 예측)

  • Lee, Keum-Chan;Yoon, Young-Sam;Lee, Nam-Joo
    • Journal of Environmental Science International
    • /
    • v.18 no.9
    • /
    • pp.971-981
    • /
    • 2009
  • An objective of this study is as follows: 1) performing sensitivity analysis and parameter estimation of RMA2 and RMA4 models for the West-Nakdong River, 2) drawing up alternatives of gates-operation for water-quality enhancement, and 3) quantitative evaluation of methodology of 'flow-restoration by gates-operation' among 'Comprehensive Plan Improving Water-Quality in the West-Nakdong River(WNR)' with the target water-quality(BOD at Nakbon-N point: below 4.3 mg/L). The parameters for the RMA2 (depth-averaged two-dimensional flow model) and RMA4 (depth-averaged two-dimensional water-quality model) were determined by sensitivity analysis. Result of parameter estimation for RMA2 and RMA4 models is $1,000\;Pa{\cdot}s$ of the eddy viscosity, 20 of the Peclet number, 0.025 of the Manning coefficient, and $1.0\;m^2/s$ of the diffusion coefficient. We have evaluated the effects of water-quality enhancement of the selected alternatives by numerical simulation technique with the models under the steady-state flow condition and the time-variant transport condition. Because of no-resuspension from river bottom and considering BOD as conservative matter, these simulation results slightly differ from real phenomena. In the case of $50\;m^3/s$ of Daejeo-gate inflow, two-dimensional flow pn results result represents that small velocity occurs in the Pyungkang Stream and no flow in the Maekdo River. In the WNR, there occurs the most rapid flow near timhae-bridge. In the WNR, changes of water-quality for the four selected simulation cases(6, 10, 30, $50\;m^3/s$ of the Daejeo-gate inflow) were predicted. Since the Daejeo-Gate and the Noksan-Gate can be opened up to 7 days, it would be found that sustainable inflow of $30\;m^3/s$ at the Daejeo-gate makes BOD in the WNR to be under the target of water-quality.

Development and Application of Two Dimensional Water Quality Model on the Downstream of Han River (한강하류뷰에서의 2차원 수질모형의 개발 및 적용)

  • Han, Geon-Yeon;Lee, Eul-Rae
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.3
    • /
    • pp.261-274
    • /
    • 2002
  • The purpose of this study was to develop two dimensional contaminant transport numerical model by finite element method. The developed model system was tested for water quality analysis when contaminants from tributaries and sewage treatment Plants flow into the main river. In this study, the model was to perform calibration for reasonable parameter production and verification for reliability and accuracy. And, the proposed model was applied on the downstream of Han river using calibrated parameters. These results represented real con taminant distribution profile along the channel, and produced the good agreement in comparing calculated vague with measured value.

Analysis of Flood Level Mitigation due to the Naju Retention-Basin by Numerical Model Application (수치모형 적용을 통한 나주 강변저류지 홍수위 저감효과 분석)

  • Rhee, Dong Sop;Kim, Hyung-Jun;Cho, Gilje
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5801-5812
    • /
    • 2014
  • The retention basin is a hydraulic structure for flood mitigation by storing river flow over a design flood. In this study, numerical models were adopted to simulate the flood mitigation effects by a retention basin. The large flood condition was applied as a boundary condition to consider an abnormal flood caused by climate change. Furthermore, the two-dimensional numerical model was adopted to regenerate the complex flow pattern due to the topography and lateral flow near the retention basin. The numerical results of the one- and two-dimensional model were analyzed and compared. The results showed that the two-dimensional model is more applicable to assessing flood mitigation by the retention basin with a complex topography and lateral flow patterns.

Validation of an Unsteady Two-dimensional Hydrodynamic and Transport Model with Experiments (비정상상태 하천흐름에서 오염물질 혼합 수치모형의 신뢰성 평가)

  • Moon, Hyoung-Bu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1168-1179
    • /
    • 2006
  • The validity of an unsteady two-dimensional(2-D) numerical hydrodynamic and pollutant dispersion model(2DNHPDM) was evaluated using the data obtained from I-sa streams in Sooncheon, Chonnam, during rain-fall run-off. Field observations was conducted for 35 hours during the 10 hours rainfall event on 7th May 2005. The water level, 2-D velocity, flow field, and COD at seven points selected along the river were measured at intervals of one hour. The model was applied to describe two-dimensional movement of dissolved pollutants in meandering non-uniform river. Major physical processes affecting the lateral and horizontal mixing of the river flow were simulated. The model was proved effective in describing the hydrodynamics and dispersion of the river pollutants from its major tributaries as well as non-point sources.

The 2D Finite Element Analysis in Nakdong-Kumho River Junction using GIS (GIS를 이용한 낙동강-금호강 합류부의 2차원 유한요소해석)

  • Hwang, Jae-Hong;Han, Kun-Yeun;Nam, Ki-Young;Choi, Seung-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.3
    • /
    • pp.21-34
    • /
    • 2009
  • Usually in flood flow problems, one-dimensional approach does not provide the required details of complex flow phenomena such as the flow in braided rivers and river junction. In this study, two-dimensional finite element mesh is constructed using DEM and GIS tool, and applied to RMA-2model. The purpose of this study is to investigate the applicability of the two dimensional model in natural rivers and to analyze characteristics of river flow due to the change of cross section. For model calibration, the result of unsteady flow analysis was compared with the observed data. Accordingly, the SMS model in this study prove to be very effective and reliable tool for the simulation of hydrodynamic characteristics under the various flow conditions.

  • PDF