• Title/Summary/Keyword: two-dimensional polymer

Search Result 187, Processing Time 0.026 seconds

Fabrication of Polymer Laser Device by Two-Photon Induced Photopolymerization Technique

  • Yokoyama, Shiyoshi;Nakahama, Tatsuo;Miki, Hideki
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.231-231
    • /
    • 2006
  • We fabricated a polymer sub-microstructure for optical device application by two-photon-induced laser lithography technique. Polymer pattern could be minimized as small as ${\sim}100\;nm$. The photopolymerization resin contains laser-dye, thus promising a high level of the optical gain. We utilized the lithography technique to the photonic crystal application, where the template of the two-dimensional photonic crystal was modified by polymer gain medium as defect-shape and line-shape orientations. Photonic band gap effect from polymer-doped photonic crystals is expected to exploit the application such as organic solid-state laser device.

  • PDF

Improvement of joining strength between aluminum alloy and polymer by two - step anodization

  • Lee, Sung-Hyung;Yashiro, Hitoshi;Kure-Chu, Song-Zhu
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.4
    • /
    • pp.144-152
    • /
    • 2020
  • In the manufacturing process of joining of aluminum alloy and polymer, the strength of the metal-polymer joining is greatly influenced by the nanostructure of the oxide film. In this study, we investigated the dependence of joining strength on the thickness, structure, pore formation and surface roughness of the formed film. After the two-step anodization process, the surface oxide layer became thinner and rougher resulting in higher joining strength with the polymer. More specifically, after the two-step anodization, the surface roughness, Ra increased from 2.3 to 3.2 ㎛ with pore of three-dimensional (3D) nanostructure, and the thickness of the oxide film was thinned from 350 to 250 nm. Accordingly, the joining strength of the aluminum alloy with polymer increased from 23 to 30 MPa.

Two-dimensional Cu Coordination Polymer: [$Cu_2Cl_2$(4,4'-dipyen)] (2차원 구리 배위 고분자: [$Cu_2Cl_2$(4,4'-dipyen)])

  • Huh, Hyun-Sue;Lee, Soon-W.
    • Korean Journal of Crystallography
    • /
    • v.18 no.1_2
    • /
    • pp.16-20
    • /
    • 2007
  • Under hydrothermal conditions, a 2-dimensional copper(I) coordination polymer [$Cu_2Cl_2$(4,4'-dipyen)] (1) was prepared from [$Cu(OAc)_2]{\cdot}H_2O$, 4,4'-dipyen, and KCl. In polymer 1, copper atoms are linked by the 4,4'-dipyen ligands approximately along the b-axis and are also linked by the chloro ligands approximately along the a-axis to form a 2-D layer, a network of rectangles.

Synthesis of Two Dimensional Polymer Network (이차원 구조를 갖는 고분자의 합성)

  • Shin, Jae Sup
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.763-767
    • /
    • 1998
  • Cholesterol-containing surfactant was synthesized, and it was sonicated with monomer [tetradeca(ethylene glycol) diacrylate] in water to from a vesicle solution. This vesicle solution was dried to construct a membrane which had a molecular multilayer structure. The monomer which stay in this membrane was polymerized with photoinitiation, and then surfactant was extracted by organic solvent. The physical properties of the two dimensional polymer network were measured, and these physical properties are tensile strength, elongation, and swelling.

  • PDF

Band Electronic Structure Study of Two-Dimensional Organic Metal (BEDT-TTF)2Cu5I6 with a Polymer Anion Layer

  • Dae Bok Kang
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.5
    • /
    • pp.515-517
    • /
    • 1991
  • The electronic behavior of a organic metal $(BEDT-TTE)_2$${Cu_5}{I_6}$ observed to be stable at low temperatures was examined by performing tight-binding band electronic structure calculations. The suppression of a metal-insulator tansition is likely to originate from its quasi-two-dimensional Fermi surface with no nesting, in agreement with experiment.

Three-dimensional vibration analysis of 3D graphene foam curved panels on elastic foundations

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Khajehzadeh, Mohammad;Yousif, Mariwan Araz;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.91-106
    • /
    • 2022
  • This paper has focused on presenting a three dimensional theory of elasticity for free vibration of 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) cylindrical panels resting on two-parameter elastic foundations. The elastic foundation is considered as a Pasternak model with adding a Shear layer to the Winkler model. The porous graphene foams possessing 3D scaffold structures have been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the shell thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. Because of using two-dimensional generalized differential quadrature method, the present approach makes possible vibration analysis of cylindrical panels with two opposite axial edges simply supported and arbitrary boundary at the curved edges. It is explicated that 3D-GrF skeleton type and weight fraction can significantly affect the vibrational characteristics of GrF-PMC panel resting on two-parameter elastic foundations.

Improvement of Spatial Resolution in Nano-Stereolithography Using Radical Quencher

  • Park, Sang-Hu;Lim, Tae-Woo;Yang, Dong-Yol;Kim, Ran-Hee;Lee, Kwang-Sup
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.559-564
    • /
    • 2006
  • The improvement of spatial resolution is a fundamental issue in the two-photon, polymerization-based, laser writing. In this study, a voxel tuning method using a radical quencher was proposed to increase the resolution, and the quenching effect according to the amount of radical quencher was experimentally investigated. Employing the proposed method, the lateral resolution of the line patterns was improved almost to 100 nm. However, a shortcoming of the quenching effect was the low mechanical strength of polymerized structures due to their short chain lengths. Nano-indentation tests were conducted to evaluate quantitatively the relationship between mechanical strength and the mixture ratio of the radical quencher into the resins. The elastic modulus was dramatically reduced from an average value of 3.015 to 2.078 GPa when 5 wt% of radical quencher was mixed into the resin. Three-dimensional woodpile structures were fabricated to compare the strength between the resin containing radical quencher and the original resin.

Rheological Behavior of Polymer/Layered Silicate Nanocomposites under Uniaxial Extensional Flow

  • Park Jun-Uk;Kim Jeong-Lim;Kim Do-Hoon;Ahn Kyung-Hyun;Lee Seung-Jong;Cho Kwang-Soo
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.318-323
    • /
    • 2006
  • We investigated the rheological behaviors and orientation of three different types of layered silicate composite systems under external flow: microcomposite, intercalated and exfoliated nanocomposites. Rheological measurements under shear and uniaxial extensional flows, two-dimensional, small-angle X-ray scattering and transmission electron microscopy were conducted to investigate the properties, as well as nano- and micro-structural changes, of polymer/layered silicate nanocomposites. The preferred orientation of the silicate layers to the flow direction was observed under uniaxial extensional flow for both intercalated and exfoliated systems, while the strain hardening behavior was observed only in the exfoliated systems. The degree of compatibility between the polymer matrix and clay determined the microstructure of polymer/clay composites, strain hardening behavior and spatial orientation of the clays under extensional flow.

Fabrication of Two-dimensional Photonic Crystal by Roll-to-Roll Nanoreplication (롤투롤 나노 복제 공정을 이용한 이차원 광결정 소자의 제작)

  • Kim, Young-Kyu;Byeon, Euihyeon;Jang, Ho-Young;Kim, Seok-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.16-22
    • /
    • 2013
  • A two-dimensional photonic crystal structure was investigated using a roll-to-roll nanoreplication and physical vapor deposition processes for the inexpensive enhanced fluorescence substrate which is not sensitive to the polarization directions of excitation light source. An 8 inch silicon master having nano dot array with a diameter of 200 nm, a height of 100 nm and a pitch of 400 nm was prepared by KrF laser scanning lithography and reactive ion etching processes. A flexible polymer mold was fabricated by flat type UV replication process and a deposition of 10 nm nickel layer as an anti-adhesion layer. A roll mold was prepared by warping the flexible polymer mold on an aluminum roll base and a roll-to-roll UV replication process was carried out using the roll mold. After the deposition of ~ 100 nm $TiO_2$ layer on the replicated nano dot array, a 2 dimensional photonic crystal structure was realized with a resonance wavelength of 635 nm for both p- and s-polarized light sources.