• Title/Summary/Keyword: two-dimensional numerical modeling

Search Result 297, Processing Time 0.032 seconds

Three-Dimensional Borehole Radar Modeling (3차원 시추공 레이다 모델링)

  • 예병주
    • Economic and Environmental Geology
    • /
    • v.33 no.1
    • /
    • pp.41-50
    • /
    • 2000
  • Geo-radar survey which has the advantage of high-resolution and relatively fast survey has been widely used for engineering and environmental problems. Three-dimensional effects have to be considered in the interpretation of geo-radar for high-resolution. However, there exists a trouble on the analysis of the three dimensional effects. To solve this problem an efficient three dimension numerical modeling algorithm is needed. Numerical radar modeling in three dimensional case requires large memory and long calculating time. In this paper, a finite difference method time domain solution to Maxwell's equations for simulating electromagnetic wave propagation in three dimensional media was developed to make economic algorithm which requires smaller memory and shorter calculating time. And in using boundary condition Liao absorption boundary. The numerical result of cross-hole radar survey for tunnel is compared with real data. The two results are well matched. To prove application to three dimensional analysis, the results with variation of tunnel's incident angle to survey cross-section and the result when the tunnel is parallel to the cross-section were examined. This algorithm is useful in various geo-radar survey and can give basic data to develop dat processing and inversion program.

  • PDF

Numerical comparison of the beam model and 2D linearized elasticity

  • Fabijanic, Eva;Tambaca, Josip
    • Structural Engineering and Mechanics
    • /
    • v.33 no.5
    • /
    • pp.621-633
    • /
    • 2009
  • In this paper we compare the solution of the one-dimensional beam model and the numerical solution of the two-dimensional linearized elasticity problem for rectangular domain of the beam-like form. We first derive the beam model starting from the two-dimensional linearized elasticity, the same way it is derived from the three-dimensional linearized elasticity. Then we present the numerical solution of the two-dimensional problem by finite element method. As expected the difference of two approximations becomes smaller as the thickness of the beam tends to zero. We then analyze the applicability of the one-dimensional model and verify the main properties of the beam modeling for thin beams.

Development of optimum modeling approach in prediction of wheelflats effects on railway forces

  • Sadeghi, Javad;Khajehdezfuly, Amin;Esmaeili, Morteza;Poorveis, Davood
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.499-509
    • /
    • 2019
  • While the wheel flat is an asymmetrical phenomenon in the railway, majority of researches have used two-dimensional models in the investigation of the effect of wheel flat on the wheel rail forces. This is due to the considerably low computational costs of two dimensional (2D) models although their reliability is questionable. This leaves us with the question of "what is the optimum modeling technique?". It is addressed in this research. For this purpose, two and three dimensional numerical models of railway vehicle/track interaction were developed. The three dimensional (3D) model was validated by comparisons of its results with those obtained from a comprehensive field tests carried out in this research and then, the results obtained from the 2D and 3D models were compared. The results obtained indicate that there are considerable differences between wheel/rail forces obtained from the 2D and 3D models in the conditions of medium to large wheel-flats. On the other hand, it was shown that the results of the 2D models are reliable for particular ranges of vehicle speed, railway track stiffness and wheel-fats lengths and depths. The results were used to draw a diagram, which presents the optimum modeling technique, compromising between the costs and accuracy of the obtained results.

Development and Hydraulic Characteristics of Continuous Block System in River Bank Protection (II) - Comparison of Numerical Analysis with Physical Modeling - (일체형 식생호안블록 시스템 개발 및 수리특성 연구(II) -일체형 호안블록시스템 수치모의를 통한 효과 분석-)

  • Jang, SukHwan
    • Journal of Wetlands Research
    • /
    • v.10 no.3
    • /
    • pp.99-109
    • /
    • 2008
  • This research focused on analyzing and comparing between the results of hydraulic physical modeling and the results of numerical modeling of continuous block system in river bank protection which is newly developed in-situ block system. To verify the hydraulic physical modeling and review the effectiveness, the numerical modeling was needed against the model test results for vegetation application or not. HEC-RAS model was for 1 dimensional numerical analysis and SMS was for 2 dimensional numerical analysis. The results of the two dimensional numerical simulation, under the condition of roughness coefficient calibration, show similar and rational consequence against the physical modeling. These satisfactory results show that the accomplished results of hydraulic modeling and the predicted results of numerical modeling corresponded reasonably each others.

  • PDF

The differences in the potential energy anomaly for analyzing mixing and stratification between 2D and 3D model

  • Minh, Nguyen Ngoc;Hwang, Jin Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.240-240
    • /
    • 2015
  • As Simpson et al. (1990) emphasized the importance of the straining process in the stratification and mixing in the estuarine circulation process, various researches have investigated on the relative contribution of each process to the overall potential energy anomaly dynamics. However, many numerical works have done only for two dimensional modeling along channel or the short distance cross sectional three dimensional simulations as Burchard et al. (2008) and the estuarine channel was not simulated so far. But, in the study on the physics of shallow coastal seas, spatial dimension in the three dimensional way affects significantly on results of a particular numerical model. Therefore, the comparison of two and three dimensional models is important to understand the real physics of mixing and stratification in an estuary. Also, as Geyer and MacCready (2013) pointed out that the lateral process seems to be important in determining the periodic stratifications, to study such process the three dimensional modeling must be required. The present study uses a numerical model to show the signification roles of each term of the time-dependent dynamic equation for the potential energy anomaly (PEA) in controlling along and lateral channel flows and different stratification structures. Moreover, we present the relationships between the ${\Phi}$-advection, the depth mean straining, vertical mixing and vertical advection can explain well how water level, salinity distribution and across velocity 2D model are slightly different from 3D.

  • PDF

Numerical Modeling of Turbulent Swirling Premixed Lifted Flames (선회유동을 가지는 난류 예혼합 부상화염장의 해석)

  • Kang, Sung-Mo;Kim, Yong-Mo;Chung, Jae-Hwa;Ahn, Dal-Hong
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.89-95
    • /
    • 2006
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially-injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flamelet model. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF

Estimating the Amounts of Long-term Cohesive Sediment Deposition in Two Tide-dominated Bays of South Korea: Numerical Study (조석으로 인한 만 내 점착성 부유사 퇴적량 추정 : 수치해석)

  • Kang, Min Goo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1B
    • /
    • pp.33-40
    • /
    • 2010
  • In this study, a two-dimensional hydrodynamic and sediment transport modeling system, HSCTM-2D is employed to simulate the amounts of long-term cohesive sediment deposition in two study bays, and its applicability is evaluated. The modeling system's two modules for hydrodynamic modeling and sediment transport modeling are calibrated, comparing the simulated results and the observed tidal levels, tidal current velocities, and suspended sediment concentrations in the Asan and the Cheonsu Bays, South Korea. It is found that there are good agreements between the simulation results and the observed values. The amounts of long-term cohesive sediment deposition of the two study bays are estimated using the modeling system, taking the suspended sediment concentrations from the open ocean in the tide-dominated environment into account. And, in the case of the Asan Bay, the annual deposition rate reaches 8.1 cm/yr; the Cheonsu Bay, 14.5 cm/yr. Overall, it is concluded that the modeling system is useful to understand the physical process of cohesive suspended sediment transport and deposition in tidal water bodies and to establish the mitigation strategy.

Two-Dimensional Numerical Modeling and Simulation of Ultrasonic Testing

  • Yim, Hyun-June;Baek, Eun-Sol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.6
    • /
    • pp.649-658
    • /
    • 2002
  • As an attempt to further improve the reliability and effectiveness of ultrasonic testing (UT), a two-dimensional numerical simulator of UT was developed. The simulator models the wave medium (or test object) using the mass-spring lattice model (MSLM) that consists of mass-points and springs. Some previous simulation results, obtained by using MSLM, are briefly reviewed in this paper, for propagation, reflection, and scattering of ultrasonic waves. Next, the models of transmitting and receiving piezoelectric transducers are introduced with some numerical results, which is a main focus of this paper. The UT simulator, established by combining the transducer models with the MSLM, was used to simulate many UT setups. In this paper, two simple setups are considered as examples, and their simulated A-scan signals are discussed. The potential of the MSLM, transducer models, and the UT simulator developed in this study to be used in the actual UT is confirmed.

A computer aided two-dimensional analysis of MOSFET and large signal modeling (Computer에 의한 MOSFET의 2차원적 해석과 large signal modeling에 관한 연구)

  • 손일헌;우형주
    • 전기의세계
    • /
    • v.28 no.8
    • /
    • pp.51-56
    • /
    • 1979
  • MOSFET의 모델을 설정하여 여러 bias 조건하에서 연결방정식과 Poisson 방정식을 numerical method로 풀어 그 해로서 전자와 정공의 분포와 전위분포를 구하였으며 또한 그 결과를 종래의 analytic한 이론들과 비교하여 보다 정확하고 CAD(Computer Aided Design)에 적합한 모델을 제안하였다.

  • PDF

A numerical Analysis on Three-Dimensional Inviscid Transonic Cascade Flow (3차원 비점성 천음속 익렬 유동에 관한 수치해석적 연구)

  • 이훈구;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.336-347
    • /
    • 1992
  • The three dimensional inviscid transonic cascade flow was investigated numerically, incorporation a four stage Runge-Kutta integration method proposed by Jameson. Time marching to the steady state was accelerated by using optimum time step and enthalpy damping. In describing the boundary conditions at inlet and outlet, Riemann invariants are considered. By adding a second and a fourth order artificial viscocities, the numerical instability due to the propagation of undamped disturbance or the rapid change of state near the shock has been prevented. The numerical results for are bump cascade, cambered two dimensional turbine cascade and three dimensional stator cascade agreed reasonably well with previous results. It has been known that the accuracy of the solution depended a lot on the modeling of the leading or trailing edge.