• 제목/요약/키워드: two-dimensional magnetic properties

검색결과 57건 처리시간 0.026초

A Measurement System for Two-Dimensional DC-Biased Magnetic Property

  • Enokizono, Masato;Takahashi, Syuichi;Ikariga, Atsushi
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제2B권4호
    • /
    • pp.143-148
    • /
    • 2002
  • Up to now, DC-biased magnetic properties have been measured in one dimension (scalar). However, scalar magnetic properties are insufficient to clarify DC-biased magnetic properties because scalar magnetic properties can only impossibly consider the phase difference between the magnetic flux density B vector and the magnetic field strength H vector. Thus the magnetic field strength H and magnetic flux density B in magnetic materials must be directly measured as a vector quantity (two-dimensional). This paper presents measurement system to clarify the two-dimensional DC-biased magnetic properties.

A Computationally Efficient Finite Element Analysis Algorithm Considering 2-D Magnetic Properties of Electrical Steel Sheet

  • Yao, Yingying;Li, Wei;Yoon, Hee-Sung;Fujiwara, Koji;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권3호
    • /
    • pp.385-390
    • /
    • 2008
  • For taking account of the two-dimensional magnetic properties of a grain-oriented electrical steel sheet, the effective anisotropic tensor reluctivity is examined, and a computationally efficient algorithm is suggested by using the response surface method to model the two-dimensional magnetic properties. It is shown that the reconstructed two-dimensional magnetic properties are fairly effective to stabilize the convergence characteristics of the Newton-Raphson iteration in the nonlinear magnetic field analysis.

이방향 여자형 SST를 이용한 이방성 전기강판의 인가자계 방향에 따른 2차원 자계특성 측정 (Measurement of 2 Dimensional Magnetic Property of Grain-oriented Electrical Steel Sheet According to Exciting Field Direction using SST with 2 Axes Excitation)

  • 음영환;김홍정;홍선기;신판석;고창섭
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권5호
    • /
    • pp.250-257
    • /
    • 2006
  • It is well known that Grain-oriented electrical steel sheets have two dimensional magnetic properties according to the direction of exciting field such as non-linear phase difference between magnetic flux density and magnetic field intensity vectors, different iron loss and permeability even when an alternating magnetic field is applied. The measurement and application of the two dimensional magnetic properties of the Grain-oriented electrical steel sheets, therefore, are very important for the design and precise performance analysis of electric machines made of them. As the direction of exciting field changes, in this paper, the two dimensional magnetic properties of a Grain-oriented electrical steel sheet, i.e., non-linear B-H curves, phase difference between B and H, and iron loss characteristics, are measured using SST(Single Sheet Tester) which has two axes excitation. The measured results are presented in two ways: using $(B,\theta_B)$ method and using hysteresis loops along rolling and transverse directions, respectively.

전기강판의 회전자계 하에서의 2차원 자계특성 측정 (Measurement of Two Dimensional Magnetic Properties of Electrical Steel Sheets under Rotating Magnetic Fields)

  • 음영환;홍선기;신판석;고창섭
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권12호
    • /
    • pp.617-622
    • /
    • 2006
  • It is necessary to measure precisely the magnetic characteristics of electrical steel sheets under rotating magnetic fields, to obtain an accurate numerical performance analysis of electric machines made of electrical steel sheets. In this paper, the two dimensional magnetic characteristics of an electrical steel sheet are measured and explained under rotating magnetic fields using a two-axes-excitation type single sheet tester (SST). Through experiments, the magnetic properties, under rotating magnetic fields, of a non-oriented and grain oriented electrical steel sheet were measured respectively. In addition, the iron losses due to not only the alternating magnetic fields, but also rotating magnetic fields were measured. These experimentally measured results can evidently be applied to the analysis of iron losses in electrical machines.

SST를 이용한 전기강판의 2차원 자기특성 측정을 위한 새로운 자속밀도 파형 제어법 (A New Algorithm of B-waveform Control for the Measurement of Two-dimensional Magnetic Properties of Electrical Steel Sheets using Single Sheet Tester)

  • 음영환;윤희성;고창섭
    • 전기학회논문지
    • /
    • 제57권7호
    • /
    • pp.1167-1174
    • /
    • 2008
  • The measurement of two-dimensional magnetic properties of electrical steel sheet using single sheet tester (SST) requires to control the B-waveform as sinusoidal. The SST electric circuit, in general, has inductance, and this makes the phase lag in electric current. For this reason, the induced voltages of H- or B-coil may have phase difference from the exciting voltage. In this paper, a new algorithm is developed to compensate the phase difference and makes the B-waveform control efficient. The developed algorithm experimentally calculates the phase difference based on the measured waveform of the induced voltage for the magnetic field intensity along transverse direction. By using the proposed algorithm, the two-dimensional magnetic properties of grain-orientated electrical steel sheet (30PG110) is measured up to 2T. By comparing the measured B- and H-waveforms, the effectiveness of the proposed algorithm is proven.

Examination of Two-Dimensional Magnetic Properties in a 5-Leg-Different- Volume- V-Connection- Transformer Core

  • Urata Shinya;Shimoji Hiroyasu;Todaka Takashi;Enokizono Masato
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권3호
    • /
    • pp.243-247
    • /
    • 2005
  • The Different-volume- V-connection transformer is known as an electric power source that can supply 3-phase electric power and single-phase electric power at the same time. Usually, we use two single-phase transformers that have different volumes. In this paper, we propose the use of a 3-phase 5-leg transformer with the different-volume- V-connection. And, we examine the magnetic properties of the 5-leg core model with the different-volume- V-connection. The magnetic properties of cores with the different-volume- V-connection are compared with those with the delta-connection. In order to express the magnetic anisotropy of the core materials and to calculate the iron loss directly, the two-dimensional vector magnetic property is considered with the E&SS modeling in the simulation.

회전 자계에 의한 철손의 유한요소 해석 (Calculation of Iron Loss under Rotational Magnetic Field Using Finite Element Method)

  • 이학용;박관수;한송엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.147-149
    • /
    • 1994
  • In designing high efficiency electrical machines, calculation of iron loss is very important. And it is reported that in the induction motor and in the T-joint of 3 phase transformer, there occurred rotational magnetic field and much iron loss is generated owing to this field. In this paper, rotational power loss in the electrical machine under rotational magnetic field is discussed. Until now, loss analysis is based on the magnetic properties under alternating field. And with this one dimensional magnetic propertis, it is difficult to express iron loss under rotational field. In this paper, we used two dimensional magnetic property data for the numerical calculation of rotational power loss. We used finite element method for calculation and the analysis model is two dimensional magnetic property measurement system. We used permeability tensor instead of scalar permeability to present two dimensional magnetic properties. And in this case, we cannot uniquely define energy functional because of the asymmetry of the permeability tensor, so Galerkin method is used for finite element analysis.

  • PDF

Electromagnetic Resonant Tunneling System: Double-Magnetic Barriers

  • Kim, Nammee
    • Applied Science and Convergence Technology
    • /
    • 제23권3호
    • /
    • pp.128-133
    • /
    • 2014
  • We study the ballistic spin transport properties in a two-dimensional electron gas system in the presence of magnetic barriers using a transfer matrix method. We concentrate on the size-effect of the magnetic barriers parallel to a two-dimensional electron gas plane. We calculate the transmission probability of the ballistic spin transport in the magnetic barrier structure while varying the width of the magnetic barriers. It is shown that resonant tunneling oscillation is affected by the width and height of the magnetic barriers sensitively as well as by the inter-spacing of the barriers. We also consider the effect of additional electrostatic modulation on the top of the magnetic barriers, which could enhance the current spin polarization. Because all-semiconductor-based devices are free from the resistance mismatch problem, a resonant tunneling structure using the two-dimensional electron gas system with electric-magnetic modulation would play an important role in future spintronics applications. From the results here, we provide information on the physical parameters of a device to produce well-defined spin-polarized current.

전기강판의 벡터 자기특성을 고려한 전기기기의 손실특성 해석 (Iron Loss Analysis of Electric Machine Considering Vector Magnetic Properties of Electrical Steel Sheet)

  • 윤희성;고창섭
    • 전기학회논문지
    • /
    • 제61권12호
    • /
    • pp.1813-1819
    • /
    • 2012
  • This paper presents vector magnetic properties of an electrical steel sheet (ESS) employed for electric machine and iron loss analysis considering the vector magnetic properties of the ESS. The vector magnetic properties of the ESS are measured by using a two-dimensional single sheet tester and modeled by an E&S vector hysteresis model to be applied to finite element method. The finite element analysis considering the vector magnetic properties is applied to iron loss analysis of a three-phase induction motor model, and the influences of the vector magnetic properties on the iron loss distribution are verified by comparing with numerical results from a typical B-H curve model.

The Magnetic Field Dependence Properties of Quasi Two Dimensional Electron-piezoelectric Potential Interacting System in GaN and ZnO

  • Lee, S.H.;Sug, J.Y.;Lee, J.H.;Lee, J.T.
    • Journal of Magnetics
    • /
    • 제16권4호
    • /
    • pp.408-412
    • /
    • 2011
  • We investigated theoretically the magnetic field dependence of the quantum optical transition of qusi 2-Dimensional Landau splitting system, in GaN and ZnO. We apply the Quantum Transport theory (QTR) to the system in the confinement of electrons by square well confinement potential. We use the projected Liouville equation method with Equilibrium Average Projection Scheme (EAPS). Through the analysis of this work, we found the increasing properties of the optical Quantum Transition Line Shapes(QTLSs) which show the absorption power and the Quantum Transition Line Widths(QTLWs) with the magnetic-field in GaN and ZnO. We also found that QTLW, ${\gamma}(B)_{total}$ of GaN < ${\gamma}(B)_{total}$ of ZnO in the magnetic field region B < 25 Tesla.