• 제목/요약/키워드: two-dimensional detection

검색결과 351건 처리시간 0.026초

지역적 가중치 거리맵을 이용한 3차원 영상 정합 (Three-Dimensional Image Registration using a Locally Weighted-3D Distance Map)

  • 이호;홍헬렌;신영길
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권7호
    • /
    • pp.939-948
    • /
    • 2004
  • 본 논문에서는 동일 환자에 대해 시간차를 두고 촬영한 뇌 CT-CT 혈관조영영상간 움직임을 보정하기 위한 강인하고 고속의 정합방법을 제안한다. 먼저, 두 영상에서 3차원 경계검출 기법을 이용하여 특징점을 추출하고, 기준영상에서는 이를 지역적 가중치 3차원 거리맵으로 변환한다. 부유영상을 기준영상으로 강체변환하면서 두 경계간의 상관관계가 최대인 위치를 탐색한다. 이 때, 최대위치가 더 이상 변화하지 않고 일정 이상 반복되면 해당위치를 최적위치로 하여 부유영상을 최적위치로 변환시켜 두 영상을 정합한다. 실험을 위하여 인공영상을 사용하여 정화성과 강인성을 평가하였고, 육안평가를 위하여 뇌 CT-CT 혈관조영영상을 사용하였다. 본 제안방법은 지역적 가중치 3차원 거리맵을 이용함으로써 적은 샘플링 개수에도 국부최대인 위치에 수렴하지 않고 최적위치로 강인하면서 고속으로 영상이 정합되었다

최적 pRBFNNs 패턴분류기 기반 2차원 영상과 ASM 알고리즘을 이용한 얼굴인식 알고리즘 설계 (Design of Optimized pRBFNNs-based Face Recognition Algorithm Using Two-dimensional Image and ASM Algorithm)

  • 오성권;마창민;유성훈
    • 한국지능시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.749-754
    • /
    • 2011
  • 본 연구에서는 최적 pRBFNNs 패턴분류기 기반 2차원 영상과 ASM 알고리즘을 이용한 얼굴인식 시스템을 설계하고자 한다. 기존의 2차원 영상 기반 얼굴 인식 기법들은 인식하고자 하는 객체의 영상내의 위치, 크기 및 배경의 존재 유무에 따라 인식률이 영향을 받는 단점이 있으며, 본 연구에서는 이를 보완하기 위하여 관심 영역 내에서의 얼굴 영역 추출 및 특징 추출기법을 이용한 얼굴인식 방법을 소개한다. 본 연구에서는 CCD 카메라를 이용하여 영상을 획득하고 히스토그램 평활화를 이용하여 조명으로 왜곡된 영상정보를 개선한다. AdaBoost 알고리즘을 이용하여 얼굴영역을 검출하고 ASM을 통하여 얼굴 윤곽선 및 형상을 추출하여 개인 프로필을 구성한 후 PCA 알고리즘을 사용하여 고차원 얼굴데이터의 차원을 축소한다. 그리고 인식 모듈로서 pRBFNNs 패턴분류기를 제안한다. 제안된 다항식 기반 RBFNNs은 조건부, 결론부, 추론부 세 가지의 기능적 모듈로 구성되어 있고 조건부는 퍼지 클러스터링을 사용하여 입력 공간을 분할하고, 결론부는 분할된 로컬 영역을 다항식 함수로 표현한다. 또한 차분진화 알고리즘을 이용하여 제안된 분류기의 파라미터, 즉, 학습률, 모멘텀 계수, 퍼지 클러스터링의 퍼지화 계수를 최적화한다. 제안된 다항식 기반 RBFNNs는 얼굴 인식을 위한 패턴분류기로서 직접 CCD 카메라로부터 입력받은 데이터를 영상 보정, 얼굴 검출 및 특징 추출 등과 같은 데이터 전 처리 과정을 포함하여 고차원 데이터로 이루어진 얼굴 영상에 대한 인식 성능을 확인한다.

무인수상정의 장애물 회피를 위한 3차원 라이다 기반 VFH 알고리즘 연구 (Obstacle Avoidance of Unmanned Surface Vehicle based on 3D Lidar for VFH Algorithm)

  • 원인식;이순걸;류재관
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제8권3호
    • /
    • pp.945-953
    • /
    • 2018
  • 본 논문은 무인수상정의 자율운항을 위한 장애물 탐지 및 회피기동을 위해 3차원 라이다를 사용하였다. 단일센서만을 사용해서 해상조건에서의 무인수상정 장애물 회피운항을 하는데 목적이 있다. 3차원 라이다는 Quanergy사의 M8센서를 사용하여 주변 환경 장애물 데이터를 (r, ��, ��)로 수집하며 장애물 정보에는 Layer 정보와 Intensity 정보를 포함한다. 수집된 데이터를 3차원 직각좌표계로 변환을 하고, 이를 2차원 좌표계로 사상한다. 2차원 좌표계로 변환한 장애물 정보를 포함하는 데이터는 수면위의 잡음데이터를 포함하고 있다. 그래서 기본적으로 무인수상정을 기준으로 가상의 관심영역을 정의하여서 규칙적으로 생성되는 잡음데이터에 대해서 삭제를 하였으며, 그 이후에 발생하는 잡음데이터는 Vector Field Histogram으로 계산된 히스토그램 데이터에서 Threshold를 정해 밀도값에 비례하여 잡음데이터를 제거하였다. 제거된 데이터를 이용하여 무인수상정의 움직임에 따른 상대물체를 탐색하여 가상의 격자지도에 1 Cell씩 저정하면서 데이터의 밀도 지도를 작성하였다. 작성된 장애물 지도를 폴라 히스토그램을 생성하고, 경계값을 이용하여 회피방향을 선정하였다.

SAAnnot-C3Pap: 반자동 주석화 방법을 적용한 연주 자세의 그라운드 트루스 수집 기법 (SAAnnot-C3Pap: Ground Truth Collection Technique of Playing Posture Using Semi Automatic Annotation Method)

  • 박소현;김서연;박영호
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권10호
    • /
    • pp.409-418
    • /
    • 2022
  • 본 논문에서는 연주자 자세의 그라운드 트루스 획득을 위한 반자동 주석 방법인 SAAnnot-C3Pap를 제안한다. 기존 음악 도메인에서 2차원 관절 위치에 대한 그라운드 트루스를 획득하기 위하여 2차원 자세 추정 방법인 오픈포즈를 활용하거나 수작업으로 라벨링 하였다. 하지만 기존의 오픈포즈와 같은 자동 주석 방법은 빠르지만 부정확한 결과를 보인다는 단점이 있고, 사용자가 직접 주석을 생성하는 수작업 주석화의 경우 많은 노동력이 필요하다는 한계점이 있다. 따라서 본 논문에서는 그 둘의 절충 방안인 반자동 주석화 방법인 SAAnnot-C3Pap을 제안한다. 제안하는 SAAnnot-C3Pap은 크게 3가지 과정으로 오픈포즈를 사용하여 자세를 추출하고, 추출된 부분 중 오류가 있는 부분을 슈퍼바이즐리를 사용하여 수정한 뒤, 오픈포즈와 슈퍼바이즐리의 결과값을 동기화하는 과정을 수행한다. 제안하는 방법을 통하여 오픈포즈에서 발생하는 잘못된 2차원 관절 위치 검출 결과를 교정할 수 있었고, 2명 이상의 사람을 검출하는 문제를 해결하였으며, 연주 자세 그라운드 트루스 획득이 가능하였다. 실험에서는 반자동 주석 방법인 오픈포즈와 본 논문에서 제안하는 SAAnnot-C3Pap의 결과를 비교·분석한다. 비교 결과, 제안하는 SAAnnot-C3Pap는 오픈포즈로 잘못 수집된 자세 정보를 개선한 결과를 보였다.

A Defocus Technique based Depth from Lens Translation using Sequential SVD Factorization

  • Kim, Jong-Il;Ahn, Hyun-Sik;Jeong, Gu-Min;Kim, Do-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.383-388
    • /
    • 2005
  • Depth recovery in robot vision is an essential problem to infer the three dimensional geometry of scenes from a sequence of the two dimensional images. In the past, many studies have been proposed for the depth estimation such as stereopsis, motion parallax and blurring phenomena. Among cues for depth estimation, depth from lens translation is based on shape from motion by using feature points. This approach is derived from the correspondence of feature points detected in images and performs the depth estimation that uses information on the motion of feature points. The approaches using motion vectors suffer from the occlusion or missing part problem, and the image blur is ignored in the feature point detection. This paper presents a novel approach to the defocus technique based depth from lens translation using sequential SVD factorization. Solving such the problems requires modeling of mutual relationship between the light and optics until reaching the image plane. For this mutuality, we first discuss the optical properties of a camera system, because the image blur varies according to camera parameter settings. The camera system accounts for the camera model integrating a thin lens based camera model to explain the light and optical properties and a perspective projection camera model to explain the depth from lens translation. Then, depth from lens translation is proposed to use the feature points detected in edges of the image blur. The feature points contain the depth information derived from an amount of blur of width. The shape and motion can be estimated from the motion of feature points. This method uses the sequential SVD factorization to represent the orthogonal matrices that are singular value decomposition. Some experiments have been performed with a sequence of real and synthetic images comparing the presented method with the depth from lens translation. Experimental results have demonstrated the validity and shown the applicability of the proposed method to the depth estimation.

  • PDF

2D H.264 동영상의 3D 입체 변환 (3D Conversion of 2D H.264 Video)

  • 홍호기;백윤기;이승현;김동욱;유지상
    • 한국통신학회논문지
    • /
    • 제31권12C호
    • /
    • pp.1208-1215
    • /
    • 2006
  • 본 논문에서는 스테레오 카메라로 입체 동영상을 얻는 방법이 아닌 H.264로 압축된 2D 동영상으로부터 복호화 과정에서 얻게 되는 움직임 정보를 이용하여 효과적인 3D 입체 동영상을 생성하는 기법을 제안한다. MPEG 기반의 동영상에서 각 프레임의 움직임 정보는 복호화단에서 얻게 되는 움직임 벡터로 분석이 가능하며 H.264에서는 움직임 예측을 위하여 다양한 크기의 블록을 이용하기 때문에 더 정확한 움직임 벡터와 정보를 얻을 수 있다. 본 논문에서 제안한 2D/3D 변환기법에서는 장면 전환점 검출, delay factor, 운동 방향, 운동 형태 등을 이용하여 좌영상과 우영상을 생성한다. 이때 동일한 컷(cut)내의 프레임들 간의 운동 형태와 운동 방향은 높은 상관도를 가지게 된다. 실험 결과를 통해서 제안된 기법을 이용할 경우 안정된 동영상 입체 변환이 가능함을 알 수 있다.

Genetic and biochemical evidence for redundant pathways leading to mycosporine-like amino acid biosynthesis in the cyanobacterium Sphaerospermopsis torques-reginae ITEP-024

  • Geraldes, Vanessa;de Medeiros, Livia Soman;Lima, Stella T.;Alvarenga, Danillo Oliveira;Gacesa, Ranko;Long, Paul F.;Fiore, Marli Fatima;Pinto, Ernani
    • ALGAE
    • /
    • 제35권2호
    • /
    • pp.177-187
    • /
    • 2020
  • Cyanobacteria have been widely reported to produce a variety of UV-absorbing mycosporine-like amino acids (MAAs). Herein, we reported production of the unusual MAA, mycosporine-glycine-alanine (MGA) in the cyanobacterium Sphaerospermopsis torques-reginae ITEP-024 using a newly developed UHPLC-DAD-MS/HRMS (ultra-high performance liquid chromatography-diode array detection-high resolution tandem mass spectrometry) method. MGA had previously been first identified in a red-algae, but S. torques-reginae strain ITEP-024 is the first cyanobacteria to be reported as an MGA producer. Herein, the chemical structure of MGA is fully elucidated from one-dimensional / two-dimensional nuclear magnetic resonance and HRMS data analyses. MAAs are unusually produced constitutively in S. torques-reginae ITEP-024, and this production was further enhanced following UV-irradiance. It has been proposed that MAA biosynthesis proceeds in cyanobacteria from the pentose phosphate pathway intermediate sedoheptulose 7-phosphate. Annotation of a gene cluster encoded in the genome sequence of S. torques-reginae ITEP-024 supports these gene products could catalyse the biosynthesis of MAAs. However, addition of glyphosate to cultures of S. torques-reginae ITEP-024 abolished constitutive and ultra-violet radiation induced production of MGA, shinorine and porphyra-334. This finding supports involvement of the shikimic acid pathway in the biosynthesis of MAAs by this species.

방향성 활동도 기반 블록 분석을 통한 압축 영상의 적응적 후처리 기법 (Adaptive Postprocessing Technique for Compressed Images using Directional Activity-based Block Analysis)

  • 김종호
    • 한국정보통신학회논문지
    • /
    • 제17권7호
    • /
    • pp.1687-1693
    • /
    • 2013
  • 본 논문에서는 저 비트율 압축 영상의 블록킹 현상을 제거하기 위한 적응적 후처리 기법을 제안한다. 적응적 후처리는 방향성 활동도 기반의 블록 분석에 따라 다른 강도의 필터를 적용하여 블록킹 현상을 선택적으로 제거한다. 격자잡음을 제거하기 위한 1차원 필터링은 블록의 방향성뿐만 아니라 블록 내 신호의 특성에도 적응적인 필터링을 수행한다. 또한 계단형 잡음 및 모서리 잡음을 검출하는 방법 및 이를 효과적으로 제거하기 위한 2차원 방향성 필터를 제안한다. 실험 결과 다양한 영상 및 비트율에 대해서 제안한 방법의 PSNR 및 주관적 화질 평가를 위한 GBIM 결과가 기존의 블록킹 현상 제거 방법에 비해 우수한 성능을 나타냄을 확인하였다.

Long-term shape sensing of bridge girders using automated ROI extraction of LiDAR point clouds

  • Ganesh Kolappan Geetha;Sahyeon Lee;Junhwa Lee;Sung-Han Sim
    • Smart Structures and Systems
    • /
    • 제33권6호
    • /
    • pp.399-414
    • /
    • 2024
  • This study discusses the long-term deformation monitoring and shape sensing of bridge girder surfaces with an automated extraction scheme for point clouds in the Region Of Interest (ROI), invariant to the position of a Light Detection And Ranging system (LiDAR). Advanced smart construction necessitates continuous monitoring of the deformation and shape of bridge girders during the construction phase. An automated scheme is proposed for reconstructing geometric model of ROI in the presence of noisy non-stationary background. The proposed scheme involves (i) denoising irrelevant background point clouds using dimensions from the design model, (ii) extracting the outer boundaries of the bridge girder by transforming and processing the point cloud data in a two-dimensional image space, (iii) extracting topology of pre-defined targets using the modified Otsu method, (iv) registering the point clouds to a common reference frame or design coordinate using extracted predefined targets placed outside ROI, and (v) defining the bounding box in the point clouds using corresponding dimensional information of the bridge girder and abutments from the design model. The surface-fitted reconstructed geometric model in the ROI is superposed consistently over a long period to monitor bridge shape and derive deflection during the construction phase, which is highly correlated. The proposed scheme of combining 2D-3D with the design model overcomes the sensitivity of 3D point cloud registration to initial match, which often leads to a local extremum.

스테레오 비전 기술을 이용한 도로 표지판의 3차원 추적 (Three Dimensional Tracking of Road Signs based on Stereo Vision Technique)

  • 최창원;최성인;박순용
    • 제어로봇시스템학회논문지
    • /
    • 제20권12호
    • /
    • pp.1259-1266
    • /
    • 2014
  • Road signs provide important safety information about road and traffic conditions to drivers. Road signs include not only common traffic signs but also warning information regarding unexpected obstacles and road constructions. Therefore, accurate detection and identification of road signs is one of the most important research topics related to safe driving. In this paper, we propose a 3-D vision technique to automatically detect and track road signs in a video sequence which is acquired from a stereo vision camera mounted on a vehicle. First, color information is used to initially detect the sign candidates. Second, the SVM (Support Vector Machine) is employed to determine true signs from the candidates. Once a road sign is detected in a video frame, it is continuously tracked from the next frame until it is disappeared. The 2-D position of a detected sign in the next frame is predicted by the 3-D motion of the vehicle. Here, the 3-D vehicle motion is acquired by using the 3-D pose information of the detected sign. Finally, the predicted 2-D position is corrected by template-matching of the scaled template of the detected sign within a window area around the predicted position. Experimental results show that the proposed method can detect and track many types of road signs successfully. Tracking comparisons with two different methods are shown.