DOI QR코드

DOI QR Code

Genetic and biochemical evidence for redundant pathways leading to mycosporine-like amino acid biosynthesis in the cyanobacterium Sphaerospermopsis torques-reginae ITEP-024

  • Geraldes, Vanessa (Faculty of Pharmaceutical Sciences, University of Sao Paulo) ;
  • de Medeiros, Livia Soman (Department of Chemistry, Federal University of Sao Paulo) ;
  • Lima, Stella T. (Centre for Nuclear Energy in Agriculture, University of Sao Paulo) ;
  • Alvarenga, Danillo Oliveira (Centre for Nuclear Energy in Agriculture, University of Sao Paulo) ;
  • Gacesa, Ranko (Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London) ;
  • Long, Paul F. (Faculty of Pharmaceutical Sciences, University of Sao Paulo) ;
  • Fiore, Marli Fatima (Centre for Nuclear Energy in Agriculture, University of Sao Paulo) ;
  • Pinto, Ernani (Faculty of Pharmaceutical Sciences, University of Sao Paulo)
  • Received : 2019.12.18
  • Accepted : 2020.05.19
  • Published : 2020.06.15

Abstract

Cyanobacteria have been widely reported to produce a variety of UV-absorbing mycosporine-like amino acids (MAAs). Herein, we reported production of the unusual MAA, mycosporine-glycine-alanine (MGA) in the cyanobacterium Sphaerospermopsis torques-reginae ITEP-024 using a newly developed UHPLC-DAD-MS/HRMS (ultra-high performance liquid chromatography-diode array detection-high resolution tandem mass spectrometry) method. MGA had previously been first identified in a red-algae, but S. torques-reginae strain ITEP-024 is the first cyanobacteria to be reported as an MGA producer. Herein, the chemical structure of MGA is fully elucidated from one-dimensional / two-dimensional nuclear magnetic resonance and HRMS data analyses. MAAs are unusually produced constitutively in S. torques-reginae ITEP-024, and this production was further enhanced following UV-irradiance. It has been proposed that MAA biosynthesis proceeds in cyanobacteria from the pentose phosphate pathway intermediate sedoheptulose 7-phosphate. Annotation of a gene cluster encoded in the genome sequence of S. torques-reginae ITEP-024 supports these gene products could catalyse the biosynthesis of MAAs. However, addition of glyphosate to cultures of S. torques-reginae ITEP-024 abolished constitutive and ultra-violet radiation induced production of MGA, shinorine and porphyra-334. This finding supports involvement of the shikimic acid pathway in the biosynthesis of MAAs by this species.

Keywords

References

  1. Balskus, E. P. & Walsh, C. T. 2010. The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science 329:1653-1656. https://doi.org/10.1126/science.1193637
  2. Bassous, G. F. & Calili, R. F. 2017. Analysis of Brazilian solar irradiance data-characteristic curves of each national grid subsystem. In New Energy Landscape: Impacts for Latin America, 6th ELAEE/IAEE Latin American Conference, International Association for Energy Economics, Cleveland, OH.
  3. Bentley, R. 1990. The shikimate pathway: a metabolic tree with many branches. Crit. Rev. Biochem. Mol. Biol. 25:307-384. https://doi.org/10.3109/10409239009090615
  4. Bode, R., Melo, C. & Birnbaum, D. 1984. Mode of action of glyphosate in Candida maltosa. Arch. Microbiol. 140:83-85. https://doi.org/10.1007/BF00409776
  5. Boratyn, G. M., Camacho, C., Cooper, P. S., Coulouris, G., Fong, A., Ma, N., Madden, T. L., Matten, W. T., McGinnis, S. D., Merezhuk, Y., Raytselis, Y., Sayers, E. W., Tao, T.,Ye, J. & Zaretskaya, I. 2013. BLAST: a more efficient report with usability improvements. Nucleic Acids Res. 41:W29-W33. https://doi.org/10.1093/nar/gkt282
  6. Cardozo, K. H. M., Carvalho, V. M., Pionto, E. & Colepicolo, P. 2006. Fragmentation of mycosporine‐like amino acids by hydrogen/deuterium exchange and electrospray ionisation tandem mass spectrometry. Rapid Commun. Mass Spectrom. 20:253-258. https://doi.org/10.1002/rcm.2305
  7. Cardozo, K. H. M., Vessecchi, R., Galembeck, S. E., Guaratini, T., Gates, P. J., Pinto, E., Lopes, N. P. & Colepicolo, P. 2009. A fragmentation study of di-acidic mycosporine-like amino acids in electrospray and nanospray mass spectrometry. J. Braz. Chem. Soc. 20:1625-1631. https://doi.org/10.1590/S0103-50532009000900009
  8. Carver, T., Harris, S. R., Berriman, M., Parkhill, J. & McQuillan, J. A. 2011. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28:464-469.
  9. Cockell, C. S. & Knowland, J. 1999. Ultraviolet radiation screening compounds. Biol. Rev. Camb. Philos. Soc. 74:311-345. https://doi.org/10.1017/S0006323199005356
  10. Dorr, F. A., Rodriguez, V., Molica, R., Henriksen, P., Krock, B. & Pinto, E. 2010. Methods for detection of anatoxin-a(s) by liquid chromatography coupled to electrospray ionization-tandem mass spectrometry. Toxicon 55:92-99. https://doi.org/10.1016/j.toxicon.2009.07.017
  11. Fischer, W. W. 2008. Biogeochemistry: life before the rise of oxygen. Nature 55:1051-1052. https://doi.org/10.1038/4551051a
  12. Geraldes, V., De Medeiros, L. S., Jacinavicius, F. R., Long, P. F. & Pinto, E. 2020. Development and validation of a rapid LC-MS/MS method for the quantification of mycosporines and mycosporine-like amino acids (MAAs) from cyanobacteria. Algal Res. 46:101796. https://doi.org/10.1016/j.algal.2020.101796
  13. Geraldes, V., Jacinavicius, F. R., Genuario, D. B. & Pinto, E. 2019. Identification and distribution of mycosporine‐like amino acids in Brazilian cyanobacteria using ultrahigh‐performance liquid chromatography with diode array detection coupled to quadrupole time‐of‐flight mass spectrometry. Rapid Commun. Mass Spectrom. Advanced online publication. https://doi.org/10.1002/rcm.8634.
  14. Gorham, P. R., McLachlan, J., Hammer, U. T. & Ki, W. K. 1964. Isolation and culture of toxic strains of Anabaena flosaquae (Lyngb.) de Bréb: with plate 7, 1 figure and 3 tables in the text. Int. Ver. Theor. Angew. Limnol. Verh. 15:796-804.
  15. Katoch, M., Mazmouz, R., Chau, R., Pearson, L. A., Pickford, R. & Neilan, B. A. 2016. Heterologous production of cyanobacterial mycosporine-like amino acids mycosporine-ornithine and mycosporine-lysine in Escherichia coli. Appl. Environ. Microbiol. 82:6167-6173. https://doi.org/10.1128/AEM.01632-16
  16. Laatsch, H. 2014. AntiBase 2014: The Natural Compound Identifier. Available from: https://application.wileyvch.de/stmdata/antibase.php. Accessed May 1, 2020.
  17. Lawrence, K. P., Gacesa, R., Long, P. F. & Young, A. R. 2018. Molecular photoprotection of human keratinocytes in vitro by the naturally occurring mycosporine‐like amino acid palythine. Br. J. Dermatol. 178:1353-1363. https://doi.org/10.1111/bjd.16125
  18. Lawrence, K. P., Long, P. F. & Young, A. R. 2017. Mycosporine-like amino acids for skin photoprotection. Curr. Med. Chem. 25:5512-5527. https://doi.org/10.2174/0929867324666170529124237
  19. Lima, S. T., Alvarenga, D. O., Etchegaray, A., Fewer, D. P., Jokela, J., Varani, A. M., Sanz, M., Dorr, F. A., Pinto, E., Sivonen, K. & Fiore, M. F. 2017. Genetic organization of anabaenopeptin and spumigin biosynthetic gene clusters in the cyanobacterium Sphaerospermopsis torques-reginae ITEP-024. ACS Chem. Biol. 12:769-778. https://doi.org/10.1021/acschembio.6b00948
  20. Miyamoto, K. T., Komatsu, M. & Ikeda, H. 2014. Discovery of gene cluster for mycosporine-like amino acid biosynthesis from Actinomycetales microorganisms and production of a novel mycosporine-like amino acid by heterologous expression. Appl. Environ. Microbiol. 80:5028-5036. https://doi.org/10.1128/AEM.00727-14
  21. Molica, R. J. R., Oliveira, E. J. A., Carvalho, P. V. V. C., Costa, A. N. S. F., Cunha, M. C. C., Melo, G. L. & Azevedo, S. M. F. O. 2005. Occurrence of saxitoxins and an anatoxin-a(s)-like anticholinesterase in a Brazilian drinking water supply. Harmful Algae 4:743-753. https://doi.org/10.1016/j.hal.2004.11.001
  22. Orfanoudaki, M., Hartmann, A., Karsten, U. & Ganzera, M. 2019. Chemical profiling of mycosporine‐like amino acids in twenty‐three red algal species. J. Phycol. 55:393-403. https://doi.org/10.1111/jpy.12827
  23. Osborn, A. R., Almabruk, K. H., Holzwarth, G., Asamizu, S., LaDu, J., Kean, K. M., Karplus, P. A., Tanguay, R. L., Bakalinsky, A. T. & Mahmud, T. 2015. De novo synthesis of a sunscreen compound in vertebrates. eLife 4:e05919. https://doi.org/10.7554/eLife.05919
  24. Pope, M. A., Spence, E., Seralvo, V., Gacesa, R., Heidelberger, S., Weston, A. J., Dunlap, W. C., Shick, J. M. & Long, P. F. 2015. O‐Methyltransferase is shared between the pentose phosphate and shikimate pathways and is essential for mycosporine‐like amino acid biosynthesis in Anabaena variabilis ATCC 29413. ChemBioChem 16:320-327. https://doi.org/10.1002/cbic.201402516
  25. Portwich, A. & Garcia-Pichel, F. 2003. Biosynthetic pathway of mycosporines (mycosporine-like amino acids) in the cyanobacterium Chlorogloeopsis sp. strain PCC 6912. Phycologia 42:384-392. https://doi.org/10.2216/i0031-8884-42-4-384.1
  26. Rastogi, R. P. & Incharoensakdi, A. 2014. UV radiation-induced biosynthesis, stability and antioxidant activity of mycosporine-like amino acids (MAAs) in a unicellular cyanobacterium Gloeocapsa sp. CU2556. J. Photochem. Photobiol B Biol. 130:287-292. https://doi.org/10.1016/j.jphotobiol.2013.12.001
  27. Rastogi, R. P. & Incharoensakdi, A. 2015. Occurrence and induction of a ultraviolet‐absorbing substance in the cyanobacterium Fischerella muscicola TISTR8215. Phycol. Res. 63:51-55. https://doi.org/10.1111/pre.12069
  28. Rastogi, R. P., Madamwar, D., Nakamoto, H. & Incharoensakdi, A. 2019. Resilience and self-regulation processes of microalgae under UV radiation stress. J. Photochem. Photobiol. C Photochem. Rev. Advanced online publication. https://doi.org/10.1016/j.jphotochemrev.2019.100322.
  29. Rastogi, R. P., Richa, Kumar, A., Tyagi, M. B. & Sinha, R. P. 2010. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J. Nucleic Acids 2010:592980.
  30. Rastogi, R. P., Sinha, R. P., Moh, S. H., Lee, T. K., Kottuparambil, S., Kim, Y. -J., Rhee, J. -S., Choi, E. -M., Brown, M. T., Hader, D. -P. & Han, T. 2014. Ultraviolet radiation and cyanobacteria. J. Photochem. Photobiol. B Biol. 141:154-169. https://doi.org/10.1016/j.jphotobiol.2014.09.020
  31. Rastogi, R. P., Sonani, R. R., Mandamwa, D. & Incharoensakdi, A. 2016. Characterization and antioxidant functions of mycosporine-like amino acids in the cyanobacterium Nostoc sp. R76DM. Algal Res. 16:110-118. https://doi.org/10.1016/j.algal.2016.03.009
  32. Sanz, M., Dorr, F. A. & Pinto, E. 2015. First report of spumigin production by the toxic Sphaerospermopsis torquesreginae cyanobacterium. Toxicon 108:15-18. https://doi.org/10.1016/j.toxicon.2015.09.019
  33. Sanz, M., Salinas, R. K. & Pinto, E. 2017. Namalides B and C and spumigins K-N from the cultured freshwater cyanobacterium Sphaerospermopsis torques-reginae. 80:2492-2501. https://doi.org/10.1021/acs.jnatprod.7b00370
  34. Sayers, E. W., Agarwala, R., Bolton, E. E., Brister, J. R., Canese, K., Clark, K., Connor, R., Fiorini, N., Funk, K., Hefferon, T., Holmes, J. B., Kim, S., Kimchi, A., Kitts, P. A., Lathrop, S., Lu, Z., Madden, T. L., Marchler-Bauer, A., Phan, L., Schneider, V. A., Schoch, C. L., Pruitt, K. D. & Ostell, J. 2019. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 47:D23-D28. https://doi.org/10.1093/nar/gky1069
  35. Shick, J. M. & Dunlap, W. C. 2002. Mycosporine-like amino acids and related gadusols: biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Annu. Rev. Physiol. 64:223-262. https://doi.org/10.1146/annurev.physiol.64.081501.155802
  36. Shick, J. M., Romaine-Lioud, S., Romaine-Lioud, S., Ferrier-Pages, C. & Gattuso, J. -P. 1999. Ultraviolet‐B radiation stimulates shikimate pathway‐dependent accumulation of mycosporine‐like amino acids in the coral Stylophora pistillata despite decreases in its population of symbiotic dinoflagellates. Limnol. Oceanogr. 44:1667-1682. https://doi.org/10.4319/lo.1999.44.7.1667
  37. Singh, S. P., Klisch, M., Sinha, R. P. & Hader, D. P. 2008a. Effects of abiotic stressors on synthesis of the mycosporine‐like amino acid shinorine in the cyanobacterium Anabaena variabilis PCC 7937. Photochem. Photobiol. 84:1500-1505. https://doi.org/10.1111/j.1751-1097.2008.00376.x
  38. Singh, S. P., Kumari, S., Rastogi, R. P., Sinha, K. L. & Sinha, R. P. 2008b. Mycosporine-like amino acids (MAAs): chemical structure, biosynthesis and significance as UV-absorbing/screening compounds. Indian J. Exp. Biol. 46:7-17.
  39. Spence, E., Bryan, S. J., Lisfi, M., Cullum, J., Dunlap, W. C., Shick, J. M., Mullineaux, C. W. & Long, P. F. 2013. 2-epi5-epi-Valiolone synthase activity is essential for maintaining phycobilisome composition in the cyanobacterium Anabaena variabilis ATCC 29413 when grown in the presence of a carbon source. Photosynth. Res. 116:33-43. https://doi.org/10.1007/s11120-013-9886-2
  40. Spence, E., Dunlap, W. C., Shick, J. M. & Long, P. F. 2012. Redundant pathways of sunscreen biosynthesis in a cyanobacterium. Chembiochem 13:531-533. https://doi.org/10.1002/cbic.201100737
  41. Taylor & Francis Group. 2017. Dictionary of Natural Products 28.1, CRC Press. Available from: http://dnp.chemnetbase.com/faces/chemical/ChemicalSearch.xhtml. Accessed May 1, 2020.
  42. Werner, V. R., Laughinghouse, H. D. 4th, Fiore, M. F., Sant'Anna, C. L., Hoff, C., de Souza Santos, K. R., Neuhaus, E. B., Molica, R. J. R., Honda, R. Y. & Echenique, R. O. 2012. Morphological and molecular studies of Sphaerospermopsis torques-reginae (Cyanobacteria, Nostocales) from South American water blooms. Phycologia 51:228-238. https://doi.org/10.2216/11-32.1
  43. Zimmermann, L., Stephens, A., Nam, S. Z., Rau, D., Kubler, J., Lozajic, M., Gabler, F., Soding, J., Lupas, A. N. & Alv, V. 2018. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430:2237-2243. https://doi.org/10.1016/j.jmb.2017.12.007

Cited by

  1. Mycosporine-Like Amino Acids (MAAs): Biology, Chemistry and Identification Features vol.14, pp.1, 2020, https://doi.org/10.3390/ph14010063
  2. Sunscreen Effect Exerted by Secondary Carotenoids and Mycosporine-like Amino Acids in the Aeroterrestrial Chlorophyte Coelastrella rubescens under High Light and UV-A Irradiation vol.10, pp.12, 2020, https://doi.org/10.3390/plants10122601