References
- Balskus, E. P. & Walsh, C. T. 2010. The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science 329:1653-1656. https://doi.org/10.1126/science.1193637
- Bassous, G. F. & Calili, R. F. 2017. Analysis of Brazilian solar irradiance data-characteristic curves of each national grid subsystem. In New Energy Landscape: Impacts for Latin America, 6th ELAEE/IAEE Latin American Conference, International Association for Energy Economics, Cleveland, OH.
- Bentley, R. 1990. The shikimate pathway: a metabolic tree with many branches. Crit. Rev. Biochem. Mol. Biol. 25:307-384. https://doi.org/10.3109/10409239009090615
- Bode, R., Melo, C. & Birnbaum, D. 1984. Mode of action of glyphosate in Candida maltosa. Arch. Microbiol. 140:83-85. https://doi.org/10.1007/BF00409776
- Boratyn, G. M., Camacho, C., Cooper, P. S., Coulouris, G., Fong, A., Ma, N., Madden, T. L., Matten, W. T., McGinnis, S. D., Merezhuk, Y., Raytselis, Y., Sayers, E. W., Tao, T.,Ye, J. & Zaretskaya, I. 2013. BLAST: a more efficient report with usability improvements. Nucleic Acids Res. 41:W29-W33. https://doi.org/10.1093/nar/gkt282
- Cardozo, K. H. M., Carvalho, V. M., Pionto, E. & Colepicolo, P. 2006. Fragmentation of mycosporine‐like amino acids by hydrogen/deuterium exchange and electrospray ionisation tandem mass spectrometry. Rapid Commun. Mass Spectrom. 20:253-258. https://doi.org/10.1002/rcm.2305
- Cardozo, K. H. M., Vessecchi, R., Galembeck, S. E., Guaratini, T., Gates, P. J., Pinto, E., Lopes, N. P. & Colepicolo, P. 2009. A fragmentation study of di-acidic mycosporine-like amino acids in electrospray and nanospray mass spectrometry. J. Braz. Chem. Soc. 20:1625-1631. https://doi.org/10.1590/S0103-50532009000900009
- Carver, T., Harris, S. R., Berriman, M., Parkhill, J. & McQuillan, J. A. 2011. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28:464-469.
- Cockell, C. S. & Knowland, J. 1999. Ultraviolet radiation screening compounds. Biol. Rev. Camb. Philos. Soc. 74:311-345. https://doi.org/10.1017/S0006323199005356
- Dorr, F. A., Rodriguez, V., Molica, R., Henriksen, P., Krock, B. & Pinto, E. 2010. Methods for detection of anatoxin-a(s) by liquid chromatography coupled to electrospray ionization-tandem mass spectrometry. Toxicon 55:92-99. https://doi.org/10.1016/j.toxicon.2009.07.017
- Fischer, W. W. 2008. Biogeochemistry: life before the rise of oxygen. Nature 55:1051-1052. https://doi.org/10.1038/4551051a
- Geraldes, V., De Medeiros, L. S., Jacinavicius, F. R., Long, P. F. & Pinto, E. 2020. Development and validation of a rapid LC-MS/MS method for the quantification of mycosporines and mycosporine-like amino acids (MAAs) from cyanobacteria. Algal Res. 46:101796. https://doi.org/10.1016/j.algal.2020.101796
- Geraldes, V., Jacinavicius, F. R., Genuario, D. B. & Pinto, E. 2019. Identification and distribution of mycosporine‐like amino acids in Brazilian cyanobacteria using ultrahigh‐performance liquid chromatography with diode array detection coupled to quadrupole time‐of‐flight mass spectrometry. Rapid Commun. Mass Spectrom. Advanced online publication. https://doi.org/10.1002/rcm.8634.
- Gorham, P. R., McLachlan, J., Hammer, U. T. & Ki, W. K. 1964. Isolation and culture of toxic strains of Anabaena flosaquae (Lyngb.) de Bréb: with plate 7, 1 figure and 3 tables in the text. Int. Ver. Theor. Angew. Limnol. Verh. 15:796-804.
- Katoch, M., Mazmouz, R., Chau, R., Pearson, L. A., Pickford, R. & Neilan, B. A. 2016. Heterologous production of cyanobacterial mycosporine-like amino acids mycosporine-ornithine and mycosporine-lysine in Escherichia coli. Appl. Environ. Microbiol. 82:6167-6173. https://doi.org/10.1128/AEM.01632-16
- Laatsch, H. 2014. AntiBase 2014: The Natural Compound Identifier. Available from: https://application.wileyvch.de/stmdata/antibase.php. Accessed May 1, 2020.
- Lawrence, K. P., Gacesa, R., Long, P. F. & Young, A. R. 2018. Molecular photoprotection of human keratinocytes in vitro by the naturally occurring mycosporine‐like amino acid palythine. Br. J. Dermatol. 178:1353-1363. https://doi.org/10.1111/bjd.16125
- Lawrence, K. P., Long, P. F. & Young, A. R. 2017. Mycosporine-like amino acids for skin photoprotection. Curr. Med. Chem. 25:5512-5527. https://doi.org/10.2174/0929867324666170529124237
- Lima, S. T., Alvarenga, D. O., Etchegaray, A., Fewer, D. P., Jokela, J., Varani, A. M., Sanz, M., Dorr, F. A., Pinto, E., Sivonen, K. & Fiore, M. F. 2017. Genetic organization of anabaenopeptin and spumigin biosynthetic gene clusters in the cyanobacterium Sphaerospermopsis torques-reginae ITEP-024. ACS Chem. Biol. 12:769-778. https://doi.org/10.1021/acschembio.6b00948
- Miyamoto, K. T., Komatsu, M. & Ikeda, H. 2014. Discovery of gene cluster for mycosporine-like amino acid biosynthesis from Actinomycetales microorganisms and production of a novel mycosporine-like amino acid by heterologous expression. Appl. Environ. Microbiol. 80:5028-5036. https://doi.org/10.1128/AEM.00727-14
- Molica, R. J. R., Oliveira, E. J. A., Carvalho, P. V. V. C., Costa, A. N. S. F., Cunha, M. C. C., Melo, G. L. & Azevedo, S. M. F. O. 2005. Occurrence of saxitoxins and an anatoxin-a(s)-like anticholinesterase in a Brazilian drinking water supply. Harmful Algae 4:743-753. https://doi.org/10.1016/j.hal.2004.11.001
- Orfanoudaki, M., Hartmann, A., Karsten, U. & Ganzera, M. 2019. Chemical profiling of mycosporine‐like amino acids in twenty‐three red algal species. J. Phycol. 55:393-403. https://doi.org/10.1111/jpy.12827
- Osborn, A. R., Almabruk, K. H., Holzwarth, G., Asamizu, S., LaDu, J., Kean, K. M., Karplus, P. A., Tanguay, R. L., Bakalinsky, A. T. & Mahmud, T. 2015. De novo synthesis of a sunscreen compound in vertebrates. eLife 4:e05919. https://doi.org/10.7554/eLife.05919
- Pope, M. A., Spence, E., Seralvo, V., Gacesa, R., Heidelberger, S., Weston, A. J., Dunlap, W. C., Shick, J. M. & Long, P. F. 2015. O‐Methyltransferase is shared between the pentose phosphate and shikimate pathways and is essential for mycosporine‐like amino acid biosynthesis in Anabaena variabilis ATCC 29413. ChemBioChem 16:320-327. https://doi.org/10.1002/cbic.201402516
- Portwich, A. & Garcia-Pichel, F. 2003. Biosynthetic pathway of mycosporines (mycosporine-like amino acids) in the cyanobacterium Chlorogloeopsis sp. strain PCC 6912. Phycologia 42:384-392. https://doi.org/10.2216/i0031-8884-42-4-384.1
- Rastogi, R. P. & Incharoensakdi, A. 2014. UV radiation-induced biosynthesis, stability and antioxidant activity of mycosporine-like amino acids (MAAs) in a unicellular cyanobacterium Gloeocapsa sp. CU2556. J. Photochem. Photobiol B Biol. 130:287-292. https://doi.org/10.1016/j.jphotobiol.2013.12.001
- Rastogi, R. P. & Incharoensakdi, A. 2015. Occurrence and induction of a ultraviolet‐absorbing substance in the cyanobacterium Fischerella muscicola TISTR8215. Phycol. Res. 63:51-55. https://doi.org/10.1111/pre.12069
- Rastogi, R. P., Madamwar, D., Nakamoto, H. & Incharoensakdi, A. 2019. Resilience and self-regulation processes of microalgae under UV radiation stress. J. Photochem. Photobiol. C Photochem. Rev. Advanced online publication. https://doi.org/10.1016/j.jphotochemrev.2019.100322.
- Rastogi, R. P., Richa, Kumar, A., Tyagi, M. B. & Sinha, R. P. 2010. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J. Nucleic Acids 2010:592980.
- Rastogi, R. P., Sinha, R. P., Moh, S. H., Lee, T. K., Kottuparambil, S., Kim, Y. -J., Rhee, J. -S., Choi, E. -M., Brown, M. T., Hader, D. -P. & Han, T. 2014. Ultraviolet radiation and cyanobacteria. J. Photochem. Photobiol. B Biol. 141:154-169. https://doi.org/10.1016/j.jphotobiol.2014.09.020
- Rastogi, R. P., Sonani, R. R., Mandamwa, D. & Incharoensakdi, A. 2016. Characterization and antioxidant functions of mycosporine-like amino acids in the cyanobacterium Nostoc sp. R76DM. Algal Res. 16:110-118. https://doi.org/10.1016/j.algal.2016.03.009
- Sanz, M., Dorr, F. A. & Pinto, E. 2015. First report of spumigin production by the toxic Sphaerospermopsis torquesreginae cyanobacterium. Toxicon 108:15-18. https://doi.org/10.1016/j.toxicon.2015.09.019
- Sanz, M., Salinas, R. K. & Pinto, E. 2017. Namalides B and C and spumigins K-N from the cultured freshwater cyanobacterium Sphaerospermopsis torques-reginae. 80:2492-2501. https://doi.org/10.1021/acs.jnatprod.7b00370
- Sayers, E. W., Agarwala, R., Bolton, E. E., Brister, J. R., Canese, K., Clark, K., Connor, R., Fiorini, N., Funk, K., Hefferon, T., Holmes, J. B., Kim, S., Kimchi, A., Kitts, P. A., Lathrop, S., Lu, Z., Madden, T. L., Marchler-Bauer, A., Phan, L., Schneider, V. A., Schoch, C. L., Pruitt, K. D. & Ostell, J. 2019. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 47:D23-D28. https://doi.org/10.1093/nar/gky1069
- Shick, J. M. & Dunlap, W. C. 2002. Mycosporine-like amino acids and related gadusols: biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Annu. Rev. Physiol. 64:223-262. https://doi.org/10.1146/annurev.physiol.64.081501.155802
- Shick, J. M., Romaine-Lioud, S., Romaine-Lioud, S., Ferrier-Pages, C. & Gattuso, J. -P. 1999. Ultraviolet‐B radiation stimulates shikimate pathway‐dependent accumulation of mycosporine‐like amino acids in the coral Stylophora pistillata despite decreases in its population of symbiotic dinoflagellates. Limnol. Oceanogr. 44:1667-1682. https://doi.org/10.4319/lo.1999.44.7.1667
- Singh, S. P., Klisch, M., Sinha, R. P. & Hader, D. P. 2008a. Effects of abiotic stressors on synthesis of the mycosporine‐like amino acid shinorine in the cyanobacterium Anabaena variabilis PCC 7937. Photochem. Photobiol. 84:1500-1505. https://doi.org/10.1111/j.1751-1097.2008.00376.x
- Singh, S. P., Kumari, S., Rastogi, R. P., Sinha, K. L. & Sinha, R. P. 2008b. Mycosporine-like amino acids (MAAs): chemical structure, biosynthesis and significance as UV-absorbing/screening compounds. Indian J. Exp. Biol. 46:7-17.
- Spence, E., Bryan, S. J., Lisfi, M., Cullum, J., Dunlap, W. C., Shick, J. M., Mullineaux, C. W. & Long, P. F. 2013. 2-epi5-epi-Valiolone synthase activity is essential for maintaining phycobilisome composition in the cyanobacterium Anabaena variabilis ATCC 29413 when grown in the presence of a carbon source. Photosynth. Res. 116:33-43. https://doi.org/10.1007/s11120-013-9886-2
- Spence, E., Dunlap, W. C., Shick, J. M. & Long, P. F. 2012. Redundant pathways of sunscreen biosynthesis in a cyanobacterium. Chembiochem 13:531-533. https://doi.org/10.1002/cbic.201100737
- Taylor & Francis Group. 2017. Dictionary of Natural Products 28.1, CRC Press. Available from: http://dnp.chemnetbase.com/faces/chemical/ChemicalSearch.xhtml. Accessed May 1, 2020.
- Werner, V. R., Laughinghouse, H. D. 4th, Fiore, M. F., Sant'Anna, C. L., Hoff, C., de Souza Santos, K. R., Neuhaus, E. B., Molica, R. J. R., Honda, R. Y. & Echenique, R. O. 2012. Morphological and molecular studies of Sphaerospermopsis torques-reginae (Cyanobacteria, Nostocales) from South American water blooms. Phycologia 51:228-238. https://doi.org/10.2216/11-32.1
- Zimmermann, L., Stephens, A., Nam, S. Z., Rau, D., Kubler, J., Lozajic, M., Gabler, F., Soding, J., Lupas, A. N. & Alv, V. 2018. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430:2237-2243. https://doi.org/10.1016/j.jmb.2017.12.007
Cited by
- Mycosporine-Like Amino Acids (MAAs): Biology, Chemistry and Identification Features vol.14, pp.1, 2020, https://doi.org/10.3390/ph14010063
- Sunscreen Effect Exerted by Secondary Carotenoids and Mycosporine-like Amino Acids in the Aeroterrestrial Chlorophyte Coelastrella rubescens under High Light and UV-A Irradiation vol.10, pp.12, 2020, https://doi.org/10.3390/plants10122601