• Title/Summary/Keyword: two transistor forward

Search Result 26, Processing Time 0.032 seconds

Loss Analyses of Soft Switching Techniques for Two-transistor Forward Converter (Two-transistor 포워드 컨버터에서 소프트 스위칭 기법의 손실 분석)

  • 김만고
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.5
    • /
    • pp.453-459
    • /
    • 2001
  • In this paper, the loss analyses of two soft switching techniques for two-transistor forward converter are performed. The sums of snubber conduction and capacitive turn-on losses for two transistors are calculated to compare the losses of the two techniques. While the conventional soft switching technique shows the loss difference between two transistors, the proposed soft switching technique shows equal as well as lower losses In two transistors. Thus, it can be said that even thermal distribution and higher reliability can be obtained by the proposed soft switching technique.

  • PDF

An Improved Soft Switching Two-transistor Forward Converter (개선된 소프트 스위칭 Two-transistor forward converter)

  • Kim, Marn-Go
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.137-140
    • /
    • 2000
  • This paper proposes an improved soft switching two-transistor forward converter which uses a novel lossless snubber circuit to effectively control the turn-off dv/dt rate of the main transistors. In the proposed soft switching implementation the turn-off voltage traces across the main two transistors are almost the same contributing to reduce the total capacitive turn-on loss and the snubber current is divided into the two transistors resulting in distributed thermal stresses

  • PDF

A Study on the ZVZCS Interleaving Two-Transistor Forward Converter using Phase Shift Control (위상이동 방식을 적용한 ZVZCS Interleaving Two-Transistor Forward 컨버터에 관한 연구)

  • Han, Kyung-Tae;Kim, Yong;Bae, Jin-Yong;Lee, Kyu-Hoon;Cho, Kyu-Man
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.276-280
    • /
    • 2003
  • This paper presents a zero voltage and zero current switching (ZVZCS) interleaving two-transistor forward converter for high input voltage and high power application. A phase shift has a disadvantage that a circulating current and RMS current stress, conduction losses of transformer and switching devices increases. Due to this circulating current and RMS current stress, conduction losses of transformer and switching devices increases. To alleviate these problems, we propose an improved interleaving two-transistor forward Zero Voltage and Zero Current Switching (ZVZCS) dc/dc converter using a tapped inductor a snubber capacitor and two snubber diodes attached at the secondary side of transformer. The proposed ZVZCS converter is verified on a 1.8kW, 5kHz experimental prototype.

  • PDF

Characteristics Analysis of Two-Transistor Forward Converter using PFC and Lossless Snubber Circuit (PFC와 무손실 스너버를 이용한 Two-Transistor Forward Converter의 특성해석)

  • Bae, Jin-Yong;Kim, Yong;Baek, Su-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.176-179
    • /
    • 2005
  • This paper proposed the two-transistor forward circuit using PFC, lossless snubber and synchronous rectifier for low voltage and high current output. The principle of operation, feature and design considerations is illustrated and verified through the experiment with a 200W(5V, 40A) 100kHz MOSFET based experimental circuit.

  • PDF

A Study on the Two Transistor Forward Converter using Synchronous Rectifier (동기정류기를 이용한 Two Transistor Forward 컨버터에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Kwon, Soon-Do;Lee, Kyu-Hoon;Cho, Kyu-Man
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1163-1165
    • /
    • 2003
  • This paper presents the TTFC(Two Transistor Forward Converter) using Synchronous Rectifier. The principle of operation, feature ana design considerations are illustrated and verified through the experiment with a 200W 100kHz MOSFET based experimental circuit.

  • PDF

A study on the efficiency characteristics for two transistor Forward DC-DC converter (Two transistor 포워드 DC-DC 컨버터의 효율 특성에 관한 연구)

  • Ahn, Tae-Young;Lee, Gwang-Taek
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.50-55
    • /
    • 2007
  • In this paper, we present an analytical method that provides fast and efficient evaluation of the conversion efficiency for Two transistor forward (TTF) DC-DC converter In the proposed method, the conduction losses are evaluated by calculating the effective values of the ideal current waveform first and incorporating them into an exact equivalent circuit model of the TTF converter that includes all the parasitic resistances of the circuit components. While the conduction losses are accurately accounted for the diode rectification, the core losses are assumed to be negligible in order to simplify the analysis. The validity and accuracy of the proposed method are verified with experiments on a prototype TTF converter An excellent correlation between the experiments and theories are obtained for the input voltages of 390V, output voltage 12V and maximum power 480W.

Single-Stage High Power Factor TTFC(Two-Transistor Forward Converter) (단일전력단 고역률 TTFC(Two-Transistor Forward Converter))

  • Bae, Jin-Yong;Kim, Yong;Kim, Pill-Soo;Lee, Eun-Young;Kwon, Soon-Do
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.226-228
    • /
    • 2005
  • This paper presents the single-stage High Power Factor TTFC(Two-Transistor Forward Converter). Recently, due to growing concern about the harmonic pollution of power distribution systems and the adoption of standards such as ICE 61000-3-2 and IEEE 519, There is a need to reduce the harmonic contests of AC line currents of power supplies. This research proposed the single-stage two switch forward circuit for low voltage and high current output.

  • PDF

A Study on the Single-Stage AC/DC PFC TTFC(TWO-Transistor Forward Converter) (단일전력단 AC/DC PFC TTFC(Two-Transistor Forward Converter)에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Kim, Pill-Soo;Cho, Kyu-Man;Choi, Geun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1432-1434
    • /
    • 2005
  • Single-stage converters are simpler and less expensive than convention two-stage converters. It can be a challenge, however, to design single-stage converters to satisfy certain key criteria such as input power factor, primary-side do bus voltage, and output voltage ripple. This is especially true for higher power single-stage AC/DC TTFC(Two-Transistor Forward Converter).

  • PDF

A Study on the Efficiency Improvement of TTFC(Two Transistor Forward Converter) using Synchronous Rectifier of Compulsory Control-driver (동기정류기 강제구동 방식을 이용한 TTFC의 효율 향상에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Lee, Eun-Young;Kwon, Soon-Do;Han, Kyung-Tae;Han, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.166-170
    • /
    • 2003
  • This paper presents the TTFC(Two Transistor Forward Converter) using Synchronous Rectifier of Compulsory Control-driver. The two transistor forward circuit is used to decrease voltage stress of primary side and the synchronous rectifier is used to reduce current stress of secondary side. Previous synchronous rectifier's MOSFET of TTFC have long dead time This paper presents synchronous rectifier of compulsory control-driver for minimized dead time. This paper compared with diode rectifier, self-driven synchronous rectifier and compulsory control-driver synchronous rectifier of TTFC. The principle of operation, feature and design considerations are illustrated and verified through the experiment with a 200W 100kHz MOSFET based experimental circuit.

  • PDF

A Study on the Electrical Characteristics in the Static Induction Transistor with Trench Oxide (트렌치 산화막을 갖는 정전유도트랜지스터의 전기적 특성에 관한 연구)

  • Kang, Ey-Goo;Kim, Je-Yoon;Hong, Seung-Woo;Sung, ManYoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.6-11
    • /
    • 2005
  • In this paper, two types of vertical SIT(Static Induction Transistor) structures are proposed to improve their electrical characteristics including the blocking voltage. Besides, the two dimensional numerical simulations were carried out using ISE-TCAD to verify the validity of the device and examine the electrical characteristics. First, a trench gate region oxide power SIT device is proposed to improve forward blocking characteristics. Second, a trench gate-source region power SIT device is proposed to obtain more higher forward blocking voltage and forward blocking characteristics at the same size. The two proposed devices have superior electrical characteristics when compared to conventional device. In the proposed trench gate oxide power SIT, the forward blocking voltage is considerably improved by using the vertical trench oxide and the forward blocking voltage is 1.5 times better than that of the conventional vertical power SIT. In the proposed trench gate-source oxide power SIT, it has considerable improvement in forward blocking characteristics which shows 1500V forward blocking voltage at -10V of the gate voltage. Consequently, the proposed trench oxide power SIT has the superior stability and electrical characteristics than the conventional power SIT.