• Title/Summary/Keyword: two temperatures

Search Result 2,464, Processing Time 0.033 seconds

Thermal and light impacts on the early growth stages of the kelp Saccharina angustissima (Laminariales, Phaeophyceae)

  • Augyte, Simona;Yarish, Charles;Neefus, Christopher D.
    • ALGAE
    • /
    • v.34 no.2
    • /
    • pp.153-162
    • /
    • 2019
  • Anthropogenic disturbances, including coastal habitat modification and climate change are threatening the stability of kelp beds, one of the most diverse and productive marine ecosystems. To test the effect of temperature and irradiance on the microscopic gametophyte and juvenile sporophyte stages of the rare kelp, Saccharina angustissima, from Casco Bay, Maine, USA, we carried out two sets of experiments using a temperature gradient table. The first set of experiments combined temperatures between $7-18^{\circ}C$ with irradiance at 20, 40, and $80{\mu}mol\;photons\;m^{-2}\;s^{-1}$. The second set combined temperatures of $3-13^{\circ}C$ with irradiance of 10, 100, and $200{\mu}mol\;photons\;m^{-2}\;s^{-1}$. Over two separate 4-week trials, in 2014 and again in 2015, we monitored gametogenesis, the early growth stages of the gametophytes, and early sporophyte development of this kelp. Gametophytes grew best at temperatures of $8-13^{\circ}C$ at the lowest irradiance of $10-{\mu}mol\;photons\;m^{-2}\;s^{-1}$. Light had a significant effect on both male and female gametophyte growth only at the higher temperatures. Temperatures of $8-15^{\circ}C$ and irradiance levels of $10-100{\mu}mol\;photons\;m^{-2}\;s^{-1}$ were conditions for the highest sporophyte growth. Sporophyte and male gametophyte growth was reduced at both temperature extremes-the hottest and coldest temperatures tested. S. angustissima is a unique kelp species known only from a very narrow geographic region along the coast of Maine, USA. The coupling of global warming with high light intensity effects might pose stress on the early life-history stages of this kelp, although, as an intertidal species, it could also be better adapted to temperature and light extremes than its subtidal counterpart, Saccharina latissima.

Effect of Strarting Structures and Intercritical Annealing on Low Temperatures Mechanical Properties of a HSLA Steel (초기조직 및 이상역열처리가 저합금 고강도강의 저온기계적 성질에 미치는 영향)

  • Cho, H.K.;Park, K.G.;Shin, D.H.;Maeng, S.C.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.1
    • /
    • pp.53-60
    • /
    • 1994
  • Austenite formation and Low temperatures mechanical properties of HSLA steel of different starting structures have been studied by intercritical annealing(IA). The different starting structures are: ferrite+pearlite(FP1), martensite(M1), cold worked ferrite+pearlite(FP2) and cold worked martensite(M2). In most cases tensile strength and elongation was increased by decreasing the testing temperatures regardless of the IA time. Tensile strength of the cold worked starting structures was higher than that of the non-cold worked starting structures. However not any noticeable difference in elongation was found between two cases. Low temperatures impact properties were affected by the starting structures. Charpy V-notch impact transition temperatures of the M-starting structures were around $-40^{\circ}C$, and those of the FP starting structures were around $-10^{\circ}C$. Impact energy was lower in the cold worked specimens than in the non-cold worked specimens at the same starting structures. DP structure obtained from the M-starting structure has shown superior low temperatures mechanical properties than the DP structure obtained from the FP-starting structure.

  • PDF

The Combined Environmental Factors on the Human Physiological and Psychological Responses in Indoor Space (실내공간의 복합 환경 조건이 인체의 생리 및 심리반응에 미치는 영향)

  • Yoon, In
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.3
    • /
    • pp.87-94
    • /
    • 2012
  • Kruithof demonstrated the preferred combination of illuminance levels and color temperatures. However, as Benett pointed out, difference of themal variables in such preference may be expected. The purpose of this study is to clarify the combined effects of lighting conditions(illuminance, color temperature), operative temperature on the human physiological and psychological responses. In order to observe operative temperature change in preference of color temperatures for three illumination levels, three subjects were exposed to two different conditions of color temperatures of 2,850K, 4,200K and 6,850K combined with operative temperatures(OT) of $25{\sim}31^{\circ}C$ at 100~1000lx. Thermal sensation vote and comfortable sensation vote, brightness perception vote were reported in each experiment conditions. The following results were obtained : 1) When illuminace level was at 100lx in operative temperatures of OT $20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$, Color temperature affect not themal sensation but Warm-cool sensation. 2) Operative temperatures affect not brightness perception vote but visual comfort sensation vote, satisfactive sensation vote, warm-cool sensation vote and themal sensation vote.

Flexural performance of double skin composite beams at the Arctic low temperature

  • Yan, Jia-Bao;Dong, Xin;Wang, Tao
    • Steel and Composite Structures
    • /
    • v.37 no.4
    • /
    • pp.431-446
    • /
    • 2020
  • This paper presents the flexural performance of double skin composite beams (DSCBs) at different Arctic low temperatures. 12 DSCBs were prepared and tested under two-point loading at different Arctic low temperatures of 20, -30, -50, and -70℃. The studied parameters include low-temperature level (T), steel-faceplate thickness (t), shear span ratio (λ), and spacing of headed studs (S). The experimental investigations under two-point loading tests showed that flexural failure occurred to all DSCBs, even including the specimen designed with the small λ ratio of 2.9. The ultimate strength behaviours of DSCBs were improved due to the improved mechanical properties of constructional materials and the confinement on shear connectors. The DSCB subjected to two-point loading and low temperatures exhibits a five-stage working mechanism. The stiffness and strength indexes of DSCBs increase linearly with temperature and t value increasing, while decreasing as shear span ratio boosts. In the contrast, the change of S value from 150 to 200 mm has little effect on the ultimate strength behavior of DSCB.

In-situ Observation of Soot Deposition Behavior in a Diffusion Flame along Solid Wall by using Microgravity Environment (미소중력환경을 이용한 벽면근방 확산화염내 매연부착거동의 원위치 관찰)

  • Choi Jac-Hyuk;Fujita Osamu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.907-914
    • /
    • 2005
  • Experiments at the Japan Microgravity Center (JAMIC) have investigated the interaction between diffusion flames and solid surfaces Placed neat flames The fuel for the flames was $C_{2} H_{4}$ The surrounding oxygen concentration was 35$\%$ with surrounding air temperatures of $T_{a}$ : 300K. Especially, the effect of wall temperature on soot deposition from a diffusion flame Placed near the wall has been studied by utilizing microgravity environment, which can attain very stable flame along the wall. Cylindrical burner with fuel injection was adopted to obtain two dimensional soot distributions by laser extinction method. In the experiment two different wall temperatures. $T_{w}$=300, 800 K, were selected as test conditions The results showed that the soot distribution between flame and burner wall was strong1y affected by the wall temperature and soot deposition increases with decrease in wall temperature. The comparison among the values lot two different wall temperatures suggests that the change in thermophoretic effect is the most dominant factor to give the change in soot deposition characteristics.

Soot Deposition Process in a Diffusion Flame to the Wall under Microgravity (미소중력환경하에서의 확산화염내 매연입자의 벽면부착 관찰)

  • Choi, Jae-Hyuk;Fujita, Osamu;Yoon, Suck-Hun
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.87-92
    • /
    • 2005
  • Experiments at the Japan Microgravity Center(JAMIC) have investigated the interaction between diffusion flames and solid surfaces placed near flames. The fuel for the flames was $C_2H_4$. The surrounding oxygen concentration was 35% with temperatures of $T_a$=300. Especially, the effect of wall temperature on soot deposition from a diffusion flame placed near the wall has been studied by utilizing microgravity environment, which can attain very stable flame along the wall. Cylindrical burner with fuel injection was adopted to obtain two dimensional soot distributions by laser extinction method. In the experiment two different wall temperatures, $T_w$=300,800K, were selected as test conditions. The results showed that the soot distribution between flame and burner wall was strongly affected by the wall temperature and soot deposition increases with decrease in wall temperature. The comparison among the values for two different wall temperatures suggested that the change in thermophoretic effect is the most dominant factor to give the change in soot deposition characteristics.

  • PDF

HEAT-UP AND COOL-DOWN TEMPERATURE-DEPENDENT HYDRIDE REORIENTATION BEHAVIORS IN ZIRCONIUM ALLOY CLADDING TUBES

  • Won, Ju-Jin;Kim, Myeong-Su;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.681-688
    • /
    • 2014
  • Hydride reorientation behaviors of PWR cladding tubes under typical interim dry storage conditions were investigated with the use of as-received 250 and 485ppm hydrogen-charged Zr-Nb alloy cladding tubes. In order to evaluate the effect of typical cool-down processes on the radial hydride precipitation, two terminal heat-up temperatures of 300 and $400^{\circ}C$, as well as two terminal cool-down temperatures of 200 and $300^{\circ}C$, were considered. In addition, two cooling rates of 2.5 and $8.0^{\circ}C/min$ during the cool-down processes were taken into account along with zero stress or a tensile hoop stress of 150MPa. It was found that the 250ppm hydrogen-charged specimen experiencing the higher terminal heat-up temperature and the lower terminal cool-down temperature generated the highest number of radial hydrides during the cool-down process under 150MPa hoop tensile stress, which may be explained by terminal solid hydrogen solubilities for precipitation, and dissolution and remaining circumferential hydrides at the terminal heat-up temperatures. In addition, the slower cool-down rate generates the larger number of radial hydrides due to a cooling rate-dependent, longer residence time at a relatively high temperature that can accelerate the radial hydride nucleation and growth.

Effect of two temperature on isotropic modified couple stress thermoelastic medium with and without energy dissipation

  • Lata, Parveen;Kaur, Harpreet
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.461-469
    • /
    • 2020
  • The objective of this paper is to study the deformation in a homogeneous isotropic modified couple stress thermoelastic medium with and without energy dissipation and with two temperatures due to thermal source and mechanical force. Laplace and Fourier transform techniques are applied to obtain the solutions of the governing equations. The displacement components, stress components, conductive temperature and couple stress are obtained in the transformed domain. Isothermal boundary and insulated boundary conditions are used to investigate the problem.The effect of two temperature and GN theory of type-II and type-III has been depicted graphically on the various components. Numerical inversion technique has been used to obtain the solutions in the physical domain. Some special cases of interest are also deduced.

Temperature Distribution in Ethylene Diffusion Flames Based on Measurement Techniques;Comparison of Thermocouple and Tow-Color Pyrometry (측정방법에 따른 에틸렌 확산화염의 온도분포;열전대 및 이색법 측정 결과 비교)

  • Lee, Won-Nam;Na, Yong-Dae;Lee, Bum-Ky;Park, Seong-Nam
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.175-182
    • /
    • 2000
  • Flame temperatures were measured and compared using a rapid insertion technique and a two-color pyrometry with Abel inversion process in co-flow ethylene diffusion flames. The measured line-of-sight temperature showed very limited usefulness in understanding the detailed soot formation/oxidation process in a co-flow diffusion flame. The flame temperatures could be measured with reasonable accuracy for the soot laden regions in ethylene diffusion flames using two-color pyrometry with an Abel inversion technique. Two-color-pyrometry with Abel inversion was demonstrated as a useful temperature measurement technique for co-flow diffusion flames, expecially under pressure conditions, where a thermocouple is not applicable. The soot volume fraction could be also obtained using tow-color pyrometry with Abel inversion, which provides important information for understanding the soot formation/oxidation mechanism in diffusion flames.

  • PDF

Effect of rotation and inclined load in a nonlocal magneto-thermoelastic solid with two temperature

  • Lata, Parveen;Singh, Sukhveer
    • Advances in materials Research
    • /
    • v.11 no.1
    • /
    • pp.23-39
    • /
    • 2022
  • This work deals with the two-dimensional deformation in a homogeneous isotropic nonlocal magneto-thermoelastic solid with two temperatures under the effects of inclined load at different inclinations. The mathematical model has been formulated by subjecting the bounding surface to a concentrated load. The Laplace and Fourier transform techniques have been used for obtaining the solution to the problem in transformed domain. The expressions for nonlocal thermal stresses, displacements and temperature are obtained in the physical domain using a numerical inversion technique. The effects of nonlocal parameter, rotation and inclined load in the physical domain are depicted and illustrated graphically. The results obtained in this paper can be useful for the people who are working in the field of nonlocal thermoelasticity, nonlocal material science, physicists and new material designers. It is found that there is a significant difference due to presence and absence of nonlocal parameter.