• Title/Summary/Keyword: two stage method

Search Result 2,122, Processing Time 0.029 seconds

A two-stage structural damage detection method using dynamic responses based on Kalman filter and particle swarm optimization

  • Beygzadeh, Sahar;Torkzadeh, Peyman;Salajegheh, Eysa
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.593-607
    • /
    • 2022
  • To solve the problem of detecting structural damage, a two-stage method using the Kalman filter and Particle Swarm Optimization (PSO) is proposed. In this method, the first PSO population is enhanced using the Kalman filter method based on dynamic responses. Due to noise in the sensor responses and errors in the damage detection process, the accuracy of the damage detection process is reduced. This method proposes a novel approach for solve this problem by integrating the Kalman filter and sensitivity analysis. In the Kalman filter, an approximate damage equation is considered as the equation of state and the damage detection equation based on sensitivity analysis is considered as the observation equation. The first population of PSO are the random damage scenarios. These damage scenarios are estimated using a step of the Kalman filter. The results of this stage are then used to detect the exact location of the damage and its severity with the PSO algorithm. The efficiency of the proposed method is investigated using three numerical examples: a 31-element planer truss, a 52-element space dome, and a 56-element space truss. In these examples, damage is detected for several scenarios in two states: using the no noise responses and using the noisy responses. The results show that the precision and efficiency of the proposed method are appropriate in structural damage detection.

Evaluation of Numerical Models for Analysing an Industrial Centrifugal Blower (산업용 원심블로어 수치해석을 위한 수치모델 평가)

  • Lee, Jongsung;Jang, Choonman
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.688-695
    • /
    • 2012
  • The present study represents the effects of boundary condition on the performance of a centrifugal blower at the interference plane between rotational and stationary domains using three dimensional compressible Navier-Stocks equations. Two boundary conditions, frozen-rotor and stage, are compared to analyze the blower performance. Installation angle between the cutoff of a volute casing and a impeller blade is also introduced to evaluate the blower performance and to understand the internal flow inside the blower. Throughout numerical simulation, it is found that the frozen rotor interface method at the interference plane represents well the variations of flow field inside the blower compared to stage interface method. However, pressure has maximum two percent error according to the installation angles while pressure is almost constant for the stage interface method. And stage interface method can relatively well predict the blower performance. Detailed internal flows of the centrifugal blower are compared and analyzed by numerical simulation.

A Two-Stage Scheduling Approach on Hybrid Flow Shop with Dedicated Machine (전용기계가 있는 혼합흐름공정의 생산 일정 계획 수립을 위한 2단계 접근법)

  • Kim, Sang-Rae;Kang, Jun-Gyu
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.4
    • /
    • pp.823-835
    • /
    • 2019
  • Purpose: This study deals with a production planning and scheduling problem to minimize the total weighted tardiness on hybrid flow shop with sets of non-identical parallel machines on stages, where parallel machines in the set are dedicated to perform specific subsets of jobs and sequence-dependent setup times are also considered. Methods: A two-stage approach, that applies MILP model in the 1st stage and dispatching rules in the 2nd stage, is proposed in this paper. The MILP model is used to assign jobs to a specific machine in order to equalize the workload of the machines at each stage, while new dispatching rules are proposed and applied to sequence jobs in the queue at each stage. Results: The proposed two-stage approach was implemented by using a commercial MILP solver and a commercial simulation software and a case study was developed based on the spark plug manufacturing process, which is an automotive component, and verified using the company's actual production history. The computational experiment shows that it can reduce the tardiness when used in conjunction with the dispatching rule. Conclusion: This proposed two-stage approach can be used for HFS systems with dedicated machines, which can be evaluated in terms of tardiness and makespan. The method is expected to be used for the aggregated production planning or shop floor-level production scheduling.

Robust Control of Two-axes Precise Stage Using LMI Optimization (LMI 최적화를 이용한 2축 정밀 스테이지의 강인제어)

  • Kim, Yeung-Shik;Park, Heung-Seok;Kim, In-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.845-851
    • /
    • 2013
  • In this paper, a robust optimization approach is applied to the two-axes stage using a piezoelectric actuator for precise motion tracking. Robust control is based on LQG/LTR (linear quadratic Gaussian control with loop transfer recovery) control. Further, an LMI (linear matrix inequality) is used to find the optimal parameter in the loop transfer recovery step, instead of a trial and error method. A decoupler in the shape of FIR filter is added to reduce the coupling effect between the motions of the two axes, and hence, the feedback control loop is designed independently for each axis motion. The experimental result shows that the proposed control scheme can be applied effectively for motion control of the two-axes stage.

Evaluation of Design Fire Curves for Single Combustibles in a Cinema Complex (복합영상관 단일 가연물의 디자인 화재곡선 평가)

  • Jang, Hyo-Yeon;Hwang, Cheol-Hong;Oh, Chang Bo;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.18-27
    • /
    • 2020
  • An actual fire test was performed on single combustibles placed in a local cinema complex, and quantitative differences in the maximum heat release rate (HRR) and fire growth rate were investigated based on the design fire curve methods (i.e., the general and 2-stage methods). In terms of combustible use and fire load, a total of 12 combustibles were selected, classified into cinema lounge and movie theater. It was found that the maximum HRR and fire growth rate determined using the two-stage method were quantitatively different from those of the general method. The application of the two-stage method, which can be used to determine the fire growth rate of the initial fire stage more precisely, could be useful in accurately predicting the activation time of fire detectors and fire-extinguishing facilities, as well as the available safe egress time (ASET) and required safe egress time (RSET).

Study of Mechanism of Counter-rotating Turbine Increasing Two-Stage Turbine System Efficiency

  • Liu, Yanbin;Zhuge, Weilin;Zheng, Xinqian;Zhang, Yangjun;Zhang, Shuyong;Zhang, Junyue
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.3
    • /
    • pp.160-169
    • /
    • 2013
  • Two-stage turbocharging is an important way to raise engine power density, to realize energy saving and emission reducing. At present, turbine matching of two-stage turbocharger is based on MAP of turbine. The matching method does not take the effect of turbines' interaction into consideration, assuming that flow at high pressure turbine outlet and low pressure turbine inlet is uniform. Actually, there is swirl flow at outlet of high pressure turbine, and the swirl flow will influence performance of low pressure turbine which influencing performance of engine further. Three-dimension models of turbines with two-stage turbocharger were built in this paper. Based on the turbine models, mechanism of swirl flow at high pressure turbine outlet influencing low pressure turbine performance was studied and a two-stage radial counter-rotation turbine system was raised. Mechanisms of the influence of counter-rotation turbine system acting on low-pressure turbine were studied using simulation method. The research result proved that in condition of small turbine flow rate corresponding to engine low-speed working condition, counter-rotation turbine system can effectively decrease the influence of swirl flow at high pressure turbine outlet imposing on low pressure turbine and increases efficiency of the low-pressure turbine, furthermore increases the low-speed performance of the engine.

A Study on the Camera Calibration Using Lens Distortion Model (렌즈의 왜곡 모델을 이용한 카메라 보정에 관한 연구)

  • Dong Min Woo
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.2
    • /
    • pp.56-68
    • /
    • 1994
  • The objective of camera calibration is to determine the internal optical characteristics of camera and the three-dimensional position and orientation of camera with respect to the real world. Calibration procedure for computer vision should be automatical, accurate and applicable to general purpose cameras and lenses. In this paper, we present camera calibration method which meets the above requirements. The algorithm is based on the two-stage method which takes into account lens distortion in the second stage. In this paper, the overdetermined nonlinear system is established in terms of the constraints to all directions and our calibration algorithm is proposed which is constructed by using Marquardt iterations and our calibration algorithm is proposed which is constructed by using Marquardt iteration method in solving nonlinear equations. Experimental results indicate that lens distortion should be taken into consideration for the calibration of the general-purpose lens. With 24 calibration points acquired out of 512$\times$512 image, the proposed algorithm came up with average error of less than 1 pixel and showed a higher accuracy over the conventional two-stage method.

  • PDF

Finite Element Analysis Design of Axisymmetric Deep Drawing Process by Local Heating (국소 가열 방법을 이용한 2단계 축대칭 디프 드로잉 공정의 해석 및 설계)

  • Lee, Dong-Woo;Song, In-Seob;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.198-204
    • /
    • 1993
  • The study is concerned with finite element analysis and design of axisymmetric deep drawing by local heating. When the bottom shape of a cup is not flat but in complex-shaped, i.e., hemispherical, the cup cannot be drawn in one or two processes in the conventional deep drawing process and the limit drawing ratio is limited as well. By introducing local heating selectively with regards to the heating position, the formability of the sheet metal can be greatly increased with the reduced number of processes. In the Process analysisthe rigid- viscoplastic finite element method is employed and the temperature effect is incorporated. Bishop's step-wise decoupled method is employed to analyze the thermomechanical interaction between deformation and heat transfer. Axisymmetric deep drawing of a hemisphere-bottomed cup has been analyzed for various combinations of heat application in the punch and the die. At the first stage of deep drawing stretch forming is practically carried out by firmly pressing the blankholder with the punch and the die heated at various levels of temperature. Then at the second stage the same cup is drawn for the saame or different combination of temperature. From the computation, it has thus been shown that the fromability of a cup is greatly increased in two-stage deep drawing with increased limet drawing ratio.

  • PDF

A Novel Simple Method to Purify Recombinant Soluble Human Complement Receptor Type 1 (sCR 1) from CHO Cell Culture

  • Wang, Pi-Chao;Hisamune Kato;Takehiro Inoue;Masatoshi Matsumura;Noriyuki Ishii;Yoshinobu Murakami;Tsukasa Seya
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.2
    • /
    • pp.67-75
    • /
    • 2002
  • The human complement receptor type 1 (CR 1, C3 b/C4b receptor) is a polymorphic membrane glycoprotein expressed on human erythrocytes, peripheral leukocytes, plasma and renal glomerular podocytes, which consists of transmembrane and cytoplasmic domains with 30 repeating homologous protein domains known as short consensus repeats (SCR). CR1 has been used as an inhibitor for inflammatory and immune system for the past several years. Recently; it is reported that CRl was found to suppress the hyper-acute rejection in xeno-transplantation and can be used to cure autoimmune diseases. A soluble form of CRl, called sCRl, is a recombinant CRl by cleaving the transmembrane domain at C-terminus and has been expressed in Chinese Hamster Ovary (CHO) cells. Several purification methods for sCR1 from CHO cells have been reported, but most of them require complicated steps at high cost. Moreover, such methods are mostly performed under the pH condition apt to denaturing sCR1 and causes sCRl losing its activity. We here report a rapid and efficient method to purify sCR1 from CHO cell. The new method consists of a two-stage of cell culture by cultivating cells in serum medium followed by serum-free medium, and a two-stage of column purification by means of heparin and gel filtration column chromatography. By using this novel method, sCR1 can be purified in a simple and effective way with high yield and purity, furthermore, the purified sCR1 was confirmed to retain its activity to suppress the complement activation in vivo and ex vivo.

Experimental Study on the Aerodynamic Characteristics of a Two Stage and a Counter-Rotating Axial Flow Fan (2단 축류팬과 엇회전식 축류팬의 공력 특성에 관한 실험적 연구)

  • Cho, Lee-Sang;Cho, Jin-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.541-547
    • /
    • 2000
  • Experiments were done for the comparison of performance and flow characteristics between a two stage axial flow fan and a counter-rotating axial flow fm. The fan performance curves were obtained by the Korean Standard Testing Methods for Turbo Fans and Blowers (KS B 6311). The fan flow characteristics were measured using a five-hole probe by the non-nulling method. Each stage of the two stage axial flow fan used for the present study has an eight bladed rotor and thirteen stator blades. The front and the rear rotor of the counter-rotating axial flow fan have eight blades each and are driven by coaxial counter rotating shafts through a gear box located between the rear rotor and the electric motor. Both of the two axial fan configurations use identical rotor blades and the same operating conditions for the one-to-one comparison of the two. Performance characteristics of the two configurations were obtained and compared by varying the blade setting angles and axial gaps between the blade rows. The passage flow fields between the hub and tip of the fans were measured and analyzed for the particular operating conditions of peak efficiency, minimum and maximum pressure coefficients.

  • PDF