• Title/Summary/Keyword: two phase SRM

Search Result 71, Processing Time 0.031 seconds

Characteristics Analysis of Short Flux-path 4/3 SRM

  • Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.40-44
    • /
    • 2013
  • This paper presents a design and characteristics analysis of novel 2-phase 4/3 switched reluctance motor (SRM) with short flux path for an air-blower application. The desired air-blower is unidirectional application, and requires a wide positive torque region without torque dead-zone. In order to get a wide positive torque region without torque dead-zone during phase commutation, asymmetric inductance characteristic with non-uniform air-gap is considered. The proposed motor could be started at any rotor position with high efficiency drive. The proposed 2-phase 4/3 SRM is verified by finite element method analysis.

Steady State and Transient Analysis of Switched Reluctance Motor Drive Fed from a Controlled AC-DC Rectifier

  • Moussa, Mona Fouad
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1495-1502
    • /
    • 2017
  • The Theory of operation of switched reluctance motors (SRM) depends on the reluctance torque, where energy is transferred to stator winding only. Although its construction is simple, the electrical design is complex, due to the switching configuration needed to deliver power to stator coils. However, because of the nonlinearly of magnetic circuit, SRM has torque ripple. This paper proposes a new strategy to drive SRM from a single-phase AC supply. Each stator winding is connected to AC-DC or AC-AC converters, which is called branch. All branches are connected in parallel to a single-phase AC supply. A shaft encoder allows current production in stator winding during the positive torque production region and terminates it during the negative torque production region. A magnetic flux is produced between stator poles when current is supplied from AC supply to stator coil and repeats many cycles as long as the rate of change of stator inductance is positive. Different possibilities for the configurations of AC-AC or AC-DC converters are introduced to drive SRM from the single-phase AC supply. A case study is presented for a SRM fed from AC supply through semi-controlled AC-DC converter is presented. A simulation model is introduced and verified by experimental rig for two-phase SRM.

A Study on Comparison of Two phase SRMs (2상 SRM의 비교에 관한 연구)

  • Oh, Seok-Gyu;Lee, Chee-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.1
    • /
    • pp.59-63
    • /
    • 2011
  • In small-power applications, variable-speed motors having high efficiency and controllability become more dominant than brushed DC motors. BLDC motors with permanent magnets in the rotor and SRMs directed by reluctance torque due to no permanent magnets have been strongly studied as a candidate. Compared to the BLDC motors, SRMs are more suitable for low-cost applications since the magnetic structure is simple, mechanically robust, and cheap due to no additional excitation in the rotor such as copper wire, aluminum, and permanent magnets. In addition, relatively small number of phases in single and two-phase SRMs allows more cost savings with regards to material in the motor and switching devices in the converter. In this paper, several 2 phase SRMs are compared to a 3 phase 6/4 SRM in terms of flux distribution in key parts of the motors.

Novel SRM Drive Systems Using Variable DC-Link Voltage

  • Jang, Do-Hyun
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.285-293
    • /
    • 2011
  • This paper proposes two SRM driving systems using a variable dc-link voltage controlled by a single-phase inverter. Two SRM converter topologies of a half bridge type and a full bridge type are proposed according to the power circuits of an inverter. The phase current can be controlled by means of a PWM controller at the inverter, and the turn-on/off angle at the phase switches can be controlled by a position sensor at the converter in the drive system. The inverter acts as a peak-current limiter if the transient current exceeds its maximum value. SRMs using the proposed topologies maintain high efficiency due to energy regeneration after the turn-off of power switches. The operational modes of the proposed topologies are verified by simulation and experimental results.

Characteristics Analysis of Short Flux Path Switched Reluctance Motor

  • Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.38-45
    • /
    • 2012
  • A novel kind of switched reluctance motor (SRM) with short flux path is proposed in this paper. Phase excitation in the SRM gives short flux paths, hence reducing the magnetomotive force required to drive the machine, resulting in significant reduction of copper wire and core losses compared to the typical SRM with diametric circulation of magnetic flux. To verify the performance, the characteristics analysis of a double-stator SRM, a 6/5 SRM with C-core structure, and a 4/5 two-phase SRM, which all have short flux paths, and a comparison with conventional SR motors are executed. The comparison demonstrates that the proposed motor offers some advantages in terms of torque and efficiency.

Driving Characteristic of Passive Converter for Single Phase SRM (단상 SRM 구동을 위한 Passive Converter 동작특성)

  • Liang, Jianing;Seok, Seung-Hun;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.113-115
    • /
    • 2008
  • At the high speed operation, the high demagnetization voltage can reduce the negative torque, so the output power and efficiency can be improved. In this paper, a novel power converter for single phase SRM with high demagnetization voltage is proposed. A simple passive capacitor circuit is added in the front-end, which consists of three diodes and one capacitor. Based on this passive network, the two capacitors can be connected in series and parallel, so the phase winding of SRM obtains general do-link voltage in excitation mode and the double dc-link voltage in demagnetization mode. The operation modes of the proposed converter are analyzed in detail. Some computer simulation results is done to verify the performance of proposed converter.

  • PDF

Single Phase SRM Converter with Boost Negative Bias (부스트 Negative Bias를 가지는 단상 SRM 컨버터)

  • Liang, Jianing;Seok, Seung-Hun;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.879-880
    • /
    • 2008
  • At the high speed operation, the boost negative bias can reduce the negative torque and increase the dwell angle, so the output power and efficiency can be improved. In this paper, a novel power converter for single phase SRM with boost negative bias is proposed. A simple passive capacitor circuit is added in the front-end, which consists of three diodes and one capacitor. Based on this passive capacitor network, the two capacitors can be connected in series and parallel in different condition. In proposed converter, the phase winding of SRM obtains general dc-link voltage in excitation mode and the double dc-link voltage in demagnetization mode. The operation modes of the proposed converter are analyzed in detail. Some computer simulation and experimental results are done to verify the performance of proposed converter.

  • PDF

Analysis of Switched Reluctance Motors using Parameters obtained by Finite Element Method (유한요소법으로 계산한 파라메타를 이용한 스위치드 릴럭턴스 모타의 해석)

  • Lee, Joon-Ho;Lee, Sang-Ho;Lee, Ki-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.47-50
    • /
    • 1997
  • The FEM(Finite Element Method) can be used to analysis SRM(Switched Reluctance Motor) as it can account for the salient pole geometry of the stator and rotor and the nonlinear properties of the magnetic materials. However, FEM requirers a lot of computer memory and computing time because, the kind of SRM drivers is verity and the switching strategies are various for one SRM driver. In this paper we proposed the method of analysis of a SRM which results are similar to FEM and has very short computing time. The Inductance and torque for each phase current at each rotor position are calculated by using two-dimensional nonlinear FEM analysis. Using the look-up table of inductance and torque and the voltage equations of SRM we obtained the phase current and torque. To verify proposed algorithm, 3 phase 6/4 SRM is analysed and found a good agreement with FEM results. And computing time is about 1/1600 of the FEM analysis.

  • PDF

Vibration and Acoustic Noise characteristic on SRM with compensating winding that two stage commutation is used at commutation action (2단계 소호전압방식을 적용한 보상권선형 SRM의 진동.소음특성)

  • Lee, Jong-Gun;Jung, Tae-Uk;An, Young-Joo;Hwang, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.55-57
    • /
    • 1999
  • SRM Drives generate large vibration and acoustic noise because it is rotated by step pulse mmf and switching commutation mechanism. The main vibration source of SRM Drive is generated by rapidly variation of radial force when phase winding current is extinguished for commutation action. So the rapidly variation of radial force is repressed firstly to reduce vibrating force of SRM Drive. This paper suggests the vibration reduction method that SRM Drive with unidirect-short compensation winding is excited by a two stage commutation method at commutation period. This reduction effect of vibration is verified with the result obtained in the test of prototype machine.

  • PDF

A Sensorless Speed Control of 2-Phase Asymmetric SRM with Parameter Compensator (파라미터 보상기를 가지는 비대칭 SRM의 센서리스 속도제어)

  • Lim, Geun-Min;Ahn, Jin-Woo;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.238-245
    • /
    • 2012
  • This paper presents a sensorless speed control of a 2-phase switch reluctance motor(SRM). The proposed sensorless control scheme is based on the slide mode observer with parameter compensator to improve the estimation performance. In the stand still position, the initial rotor position is determined by pulse current responses of each phase windings and the current difference. In order to determine an accurate initial rotor position, the two initial rotor positions are estimated by the difference of the pulse currents. From the stand still to the operating region, a simple open loop control which determines the commutation sequence by the pulse current of the unexcited phase winding is used. When the motor speed is reached to the sensorless control region, the estimated rotor position and speed by the slide mode observer are used to control the SRM. The flux calculator used in the slide mode observer is designed by phase voltage and the voltage drops in the phase resistance of the winding. The accuracy of the flux calculator is dependent on the phase resistance. For the continuous update of the phase resistance, current gradient at the inductance break point is used in this paper. The error of the estimated rotor position at the current gradient position is used to update the phase resistance to improve the sensorless scheme. The proposed sensorless speed control scheme is verified with a practical compressor used in home appliances. And the results show the effectiveness of the proposed control scheme.