• Title/Summary/Keyword: two dimensional finite element analysis

Search Result 1,084, Processing Time 0.032 seconds

The 3D Surface Crack-Front Constraints in Welded Joins (용접부 3차원 표면균열선단에서의 구속상태)

  • Lee, Hyeong-Il;Seo, Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.144-155
    • /
    • 2000
  • 초록 The validity, of a single parameter such as stress intensity, factor K or J-integral in traditional fracture mechanics depends strongly on the geometry, and loading condition. Therefore the second parameter like T-stress measuring the stress constraint is additionally needed to characterize the general crack-tip fields. While many, research works have been done to verify, the J-T description of elastic-plastic crack-tip stress fields in plane strain specimens, limited works (especially. for bimaterials) have been performed to describe the structural surface crack-front stress fields with the two parameters. On this background, via detailed three dimensional finite element analyses for surface-cracked plates and straight pipes of homogeneous materials and bimaterials under various loadings, we investigate the extended validity or limitation of the two parameter approach. We here first develop a full 3D mesh generating program for semi-elliptical surface cracks, and calculate elastic T-stress from the obtained finite element stress field. Comparing the J-T predictions to the elastic-plastic stresses from 3D finite element analyses. we then confirm the extended validity of fracture mechanics methodology based on the J-T two parameters in characterizing the surface crack-front fields of welded plates and pipes under various loadings.

The Development of Expert System for Strength Evaluation of TiNi Fiber Reinforced Al Matrix Composite (TiNi/Al기 형상기억복합재료의 강도평가를 위한 전문가시스템의 개발)

  • Park, Young-Chul;Lee, Dong-Hwa;Park, Dong-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1099-1108
    • /
    • 2004
  • In this paper, a study on the development of expert system for Al matrix composite with shape memory alloy fiber is performed to evaluate termomechanical behavior and mechanical properties. Expert system is very useful computer-based analysis system designed to make analysis technique and knowledge conveniently available to a lot of fabricable condition. In the developed system, it is possible to predict termomechanical behavior and mechanical properties for other composite with shape memory alloy fiber. The smartness of the shape memory alloy is given due to the shape memory effect of the TiNi fiber which generates compressive residual stress in the matrix material when heated after being prestrained. For finite element analysis, an analytical model is assumed two dimensional axisymmetric model compared of one fiber and the matrix. To evaluate the strength of composite using FEM, the concept of smart composite was simulated on computer Thus, in this paper, the FEA was carried out at two critical temperature conditions; room temperature and high temperature(363k). The finite element analysis result was compared with the test result for the analysis validity.

The two-scale analysis method for bodies with small periodic configurations

  • Cui, J.Z.;Shih, T.M.;Wang, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.6
    • /
    • pp.601-614
    • /
    • 1999
  • The mechanical behaviours of the structure made from composite materials or the structure with periodic configurations depend not only on the macroscopic conditions of structure, but also on the detailed configurations. The Two-Scale Analysis (TSA) method for these structures, which couples the macroscopic characteristics of structure with its detailed configurations, is configurations, is presented for 2 or 3 dimensional case in this paper. And the finite element algorithms based on TSA are developed, and some results of numerical experiments are given. They show that TSA with its finite element algorithms is more effective.

An embedded crack model for failure analysis of concrete solids

  • Dujc, Jaka;Brank, Bostjan;Ibrahimbegovic, Adnan;Brancherie, Delphine
    • Computers and Concrete
    • /
    • v.7 no.4
    • /
    • pp.331-346
    • /
    • 2010
  • We present a quadrilateral finite element with an embedded crack that can be used to model tensile fracture in two-dimensional concrete solids and the crack growth. The element has kinematics that can represent linear jumps in both normal and tangential displacements along the crack line. The cohesive law in the crack is based on rigid-plasticity with softening. The required material data for the concrete failure analysis are the constants of isotropic elasticity and the mode I softening curve. The results of two well known tests are presented in order to illustrate very satisfying performance of the presented approach to simulate failure of concrete solids.

Analysis of discontinuous contact problem in two functionally graded layers resting on a rigid plane by using finite element method

  • Polat, Alper;Kaya, Yusuf
    • Computers and Concrete
    • /
    • v.29 no.4
    • /
    • pp.247-253
    • /
    • 2022
  • In this study, the problem of discontinuous contact in two functionally graded (FG) layers resting on a rigid plane and loaded by two rigid blocks is solved by the finite element method (FEM). Separate analyzes are made for the cases where the top surfaces of the problem layers are metal, the bottom surfaces are ceramic and the top surfaces are ceramic and the bottom surfaces are metal. For the problem, it is accepted that all surfaces are frictionless. A two-dimensional FEM analysis of the problem is made by using a special macro added to the ANSYS package program The solution of this study, which has no analytical solution in the literature, is given with FEM. Analyzes are made by loading different Q and P loads on the blocks. The normal stress (σy) distributions at the interfaces of FG layers and between the substrate and the rigid plane interface are obtained. In addition, the starting and ending points of the separations between these surfaces are determined. The normal stresses (σx, σy) and shear stresses (τxy) at the point of separation are obtained along the depth. The results obtained are shown in graphics and tables. With this method, effective results are obtained in a very short time. In addition, analytically complex and long problems can be solved with this method.

Numerical Analysis of Extrusion Processes of Particle Filled Plastic Materials Subject to Slip at the Wall (미끄럼현상을 갖는 입자충전 플라스틱재료의 압출공정 수치해석)

  • 김시조;권태헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2585-2596
    • /
    • 1994
  • Many particle filled materials like Poweder/Binder mixtures for poweder injection moldings, have complicated rheological behaviors such as an yield stress and slip phenomena. In the present study, numerical simulation programs via a finite element method and a finite difference method were developed for the quasi-three-dimensional flows and the two-dimensional flow models, respectively, with the slip phenomena taken into account in terms of a slip velocity. In order to qualitatively understand the slip effects, typical numerical results such as vector plots, pressure contours in the cross-channel plane, and isovelocity controus for the down-channel direction were discussed with respect to various slip coefficients. Slip velocities along the boudary surfaces were also investigated to find the effects of the slip coefficient and processing conditions on the overall flow behavior. Based on extensive numerical calculations varying the slip coefficients, pressure gradient, aspect ratio, and power law index, the screw characteristics of the extrusion process were studied in particular with comparisons between the slip model and non-slip model.

A Study on the Behavior of Elastic Stress Distribution in Front Fillet Welds by Finite Element Method (Front Fillet Welds에서의 탄성응력(彈性應力)의 거동(擧動)에 관(關)한 연구(硏究))

  • Dong-Suk,Um
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.12 no.2
    • /
    • pp.35-42
    • /
    • 1975
  • This paper investigates the distribution of stress and its behavior at the Root Toe in fillet welding joint. Furthermore, the stress components and principal stresses in the fillet welds are calculated by the finite element method. The distribution of stresses obtained numerically by means of the finite element method is also compared with the experimental results of two dimensional photoelasticity. A Cover plate type and Center block type of fillet welds are used as models for the numerical calculations covering the variations of 2 W/M(thickness of main plate/thickness of cover plate)=1 through 2W/M=4. The results obtained in these studies are summarized as follows; 1) When W2/M values become small, the stress concentration factors of the Root are larger than of the Toe in a C-type. Its critical value is 2W/M=3.00. However, no critical value exists in a T-type. 2) For 2W/M Values being avove 3.5 in a C-type and above 4.0 in a T-type, $K_R$ and $K_{\tau}$ become 1. 3) According to the differences of 2W/M values, the differences in stress become increasing in the Root but become decreasing in the Toe. These differences, however, disappear as the free boundary surface is approached. 4) The stress concentration factors of both the Root and Toe obtained by means of the finite element method have somewhat lower values than obtained by the photoelasiticity. But their principal stress directions coincide in either method. 5) It proves beneficial to employ the finite element method for two-dimensional plane stress analysis in front fillet welding joint.

  • PDF

Finite Element Analysis of a BLDC Motor Considering the Eddy Current in Rotor Steel Shell (회전자 철심의 와전류를 고려한 BLDC 전동기의 유한 요소 해석)

  • Park, Seung-Chan;Yun, Tae-Ho;Gwon, Byeong-Il;Yun, Hui-Su;Won, Seong-Hong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.3
    • /
    • pp.110-116
    • /
    • 1999
  • This paper describes the effect of eddy currents in the rotor steel shell of exterior-rotor permanent magnet BLDC motor of which rotor is revolving at a high speed. A two-dimensional time-stepping finite element method is used for analyzing electromagnetic field and computing performances of the motor. As a result the effect of the eddy currents in the rotor steel shell is shown by comparing the analysis results from both the proposed method and the conventional one.

  • PDF

Electrochemical Response of Polymer Actuators using Finite Element Formulation and ANSYS/Emag

  • Kang, Sung-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.369-375
    • /
    • 2010
  • The two-dimensional finite element formulation for the basic field equations governing electrochemical responses of ionic conducting polymer-metal composite(IPMC) actuators is proposed in the present study. Biaxial deformation of a platinum plated Nafion actuator having 4 electrodes is dominated by electro-osmosis of hydrated ions and self-diffusion of free water molecules. Some numerical studies for IPMC actuators with electric field are carried out in order to show the validity of the proposed formulation and electric field analysis for the initial condition of total charge distribution are conducted using commercial code ANSYS/Emag.

Finite Element Analysis of Harmonics Generation by Nonlinear Inclusion

  • Yang, Seung-Yong;Kim, No-Hyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.564-568
    • /
    • 2010
  • When ultrasound propagates to a crack, transmitted and reflected waves are generated. These waves have useful information for the detection of the crack lying in a structure. When a crack is under residual stress, crack surfaces will contact each other and a closed crack is formed. For closed cracks, the fundamental component of the reflected and transmitted waves will be weak, and as such it is not easy to detect them. In this case, higher harmonic components will be useful. In this paper, nonlinear characteristic of a closed crack is modeled by a continuum material having a tensile-compressive unsymmetry, and the amplitude of the second harmonic wave was obtained by spectrum analysis. Variation of the second harmonic component depending on the nonlinearity of the inclusion was investigated. Two-dimensional plane strain model is considered, and finite element software ABAQUS/Explicit is used.