• Title/Summary/Keyword: two cracks

Search Result 817, Processing Time 0.029 seconds

Relationship of box counting of fractured rock mass with Hoek-Brown parameters using particle flow simulation

  • Ning, Jianguo;Liu, Xuesheng;Tan, Yunliang;Wang, Jun;Tian, Chenglin
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.619-629
    • /
    • 2015
  • Influenced by various mining activities, fractures in rock masses have different densities, set numbers and lengths, which induce different mechanical properties and failure modes of rock masses. Therefore, precisely expressing the failure criterion of the fractured rock influenced by coal mining is significant for the support design, safety assessment and disaster prevention of underground mining engineering subjected to multiple mining activities. By adopting PFC2D particle flow simulation software, this study investigated the propagation and fractal evolution laws of the micro cracks occurring in two typical kinds of rocks under uniaxial compressive condition. Furthermore, it calculated compressive strengths of the rocks with different confining pressures and box-counting dimensions. Moreover, the quantitative relation between the box-counting dimension of the rocks and the empirical parameters m and s in Hoek-Brown strength criterion was established. Results showed that with the increase of the strain, the box-counting dimension of the rocks first increased slowly at the beginning and then exhibited an exponential increase approximately. In the case of small strains of same value, the box-counting dimensions of hard rocks were smaller than those of weak rocks, while the former increased rapidly and were larger than the latter under large strain. The results also presented that there was a negative correlation between the parameters m and s in Hoek-Brown strength criterion and the box-counting dimension of the rocks suffering from variable mining activities. In other words, as the box-counting dimensions increased, the parameters m and s decreased linearly, and their relationship could be described using first order polynomial function.

Origins and Protective Schemes of Leaking Water into the Buddhist Triad Cave in Gunwi (군위 삼존석굴의 누수 원인과 방지대책)

  • Hwang, Sang Koo
    • Journal of Conservation Science
    • /
    • v.11 no.1 s.14
    • /
    • pp.15-27
    • /
    • 2002
  • The Buddhist Triad Cave in Gunwi, which consists of porphyritic biotite granite, has been deteriorated by a few weatherings. Origin of the weatherings is rain that can be leaked into the cave. Therefore the author investigates a few possible joints and bypasses leaking water, and reinforces any protective schemes for the rain influx. The porphyritic granite around the cave regularly develops two NEE and NWW joint sets. The NEE joint set could be divided into 4 joint zones among which $J_m\;and\;J_3$ may directly affect the leaking water into the cave. A extensional joint, in northern wall of the cave, runs through the $J_m$ joint zone. A small rain could rarely gets through the bypass, but a heavy rain has a good circulation through the joints to be leaked into the cave for a long time because of its long way. Many joints and cracks, in the ceiling near the cave entrance, immediately get to the $J_3$ joint zone, and have a good circulation of a small rain 10 mm. It is the desirable protective schemes that forbid rains to influx along the ranges from L -9 m to +10 m in the $J_m$ joint zone and upper half circle with radius 5 m in the $J_3$ joint zone. The joint apertures should be filled with a petro-epoxy and petro-filler to stop the water flow.

  • PDF

SH Wave Scattering from Cracks: Comparisons of Approximate and Exact Solutions (SH파의 균열 산란장 해석: 근사해와 엄밀해의 비교)

  • Jeong, Hyun-Jo;Park, Moon-Cheol;Song, Sung-Jin;Schmerr, L.W.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.354-361
    • /
    • 2004
  • This Paper describes a crack scattering model for SH wave based on the boundary integral equation(BIE) method, where the fundamental unknown is crack opening displacement(COD). When a time harmonic plane wave was incident on a 2-D isolated crack (slit) of width 2a, the COD distributions were numerically calculated as a function of ka. The calculated COD agreed well with results obtained with other methods. The far-field scattering amplitude, which completely characterizes the flaw response, was calculated in two ways. The Kirchhoff approximation and the BIE-COD exact formulation were compared in terms of incidence angle and frequency ka in a pulse-echo mode. Maximum response was obtained for both methods at the specular reflection direction. Away from the specular direction, the Kirchhoff approximation becomes less accurate. The time domain crack response was also calculated using a band-limited spectrum of center frequency 10 MHz. At oblique incidence to the crack both methods show the existence of an antisymmetric flash points occurring from the crack edge. The Kirchhoff approximation provides an exact time interval between flash points, although it unrealistically gives the same amplitude.

Research and Development for Decontamination System of Spent Resin in Hanbit Nuclear Power Plant (한빛원전 폐수지 제염공정 개발연구)

  • Sung, Gi Hong
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.217-221
    • /
    • 2015
  • When reactor coolant leaks occur due to cracks of a steam generator's tube, radioactive materials contained in the primary cooling water in nuclear power plant are forced out toward the secondary systems. At this time the secondary water purification resin in the ion exchange resin tower of the steam generator blowdown system is contaminated by the radioactivity of the leaked radioactive materials, so we pack this in special containers and store temporarily because we could not dispose it by ourselves. If steam generator tube leakage occurs, it produces contaminated spent resins annually about 5,000~7,000 liters. This may increase the amount of nuclear waste productions, a disposal working cost and a unit price of generating electricity in the plant. For this reasons, it is required to develop a decontamination process technique for reducing the radioactive level of these resins enough to handle by the self-disposal method. In this research, First, Investigated the structure and properties of the ion exchange resin used in a steam generator blowdown system. Second, Checked for a occurrence status of contaminated spent resin and a disposal technology. Third, identified the chemical characteristics of the waste radionuclides of the spent resin, and examined ionic bonding and separation mechanism of radioactive nuclear species and a spent resin. Finally, we carried out the decontamination experiment using chemicals, ultrasound, microbubbles, supercritical carbon dioxide to process these spent resin. In the case of the spent resin decontamination method using chemicals, the higher the concentration of the drug decontamination efficiency was higher. In the ultrasound method, foreign matter of the spent resin was removed and was found that the level of radioactivity is below of the MDA. In the microbubbles method, we found that the concentration of the radioactivity decreased after the experiment, so it can be used to the decontamination process of the spent resin. In supercritical carbon dioxide method, we found that it also had a high decontamination efficiency. According to the results of these experiments, almost all decontamination method had a high efficiency, but considering the amounts of the secondary waste productions and work environment of the nuclear power plant, we judged the ultrasound and supercritical carbon dioxide method are suitable for application to the plant and we established the plant applicable decontamination process system on the basis of these two methods.

Pile-cap Connection Behavior between Hollow-Head Precast Reinforced Concrete Pile and Foundation (프리캐스트 철근콘크리트 중공 말뚝과 기초 접합부 반복가력 거동)

  • Bang, Jin-Wook;Jo, Young-Jae;Ahn, Kyung-Chul;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.71-77
    • /
    • 2019
  • Recently, most of the pile foundations have been applied as a method to transfer the heavy load of the structure to the ground with high bearing capacity. In this study, the pile-cap behavior between foundation and hollow-head precast reinforced concrete(HPC) pile reinforced with longitudinal rebar and filling concrete was experimentally evaluated depending on the cyclic load and reinforcement ratio. As the drift ratio increases, it was found that the cracks pattern and fracture behavior of two types of pile-cap specimens according to the reinforcement ratio were evaluated to be similar. As the reinforcement ratio increases by 1.77 times, the BS-H25 specimen increases the maximum load by 1.47 times compared to the BS-H19 specimen. However, the ductility ratio of positive and negative was decreased by 76% and 70% respectively. After the yielding of the pile-cap reinforcing rebars, the positive and negative stiffness of the all specimens were decreased by a range from 66% to 71% and a range from 54% to 57% respectively, and the average stiffness of BS-H25 specimen is 13% higher than that of BS-H19 specimen. The cumulative dissipated energy capacity of BS-H19 and BS-H25 specimen under ultimate load state is 5.5 times and 6.6 times higher than that of service load state.

A study on the processing of dental ceramic composites by using laser (치과용 세라믹 보철물 소재 레이저 가공성 평가)

  • Hwang, Junho;Kwon, Sung-Min;Lee, ChanWoo;Kim, HyunDeok;Kim, Im-Sun;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Purpose: The laser processability of dental prosthesis is investigated using two ceramic composites, including 3M, Lava Ultimate and Ivoclar vivadent, IPS e.max. Materials and methods: The $CO_2$ laser, picosecond laser and femtosecond laser are used to assess the processing power of dental prosthetic materials Lava Ultimate and IPS e.max and the line processing shape was measured using a confocal microscope. Results: The brittleness, carbonization and micro crack of the ceramic composite were influenced by heat accumulation of the material and could be controlled by the laser power and pulse time. Conclusion: In the case of $CO_2$ lasers, micro crack and carbonation occurred immediately, and in the picosecond laser processing, the micro cracks are partially improved, but the carbonization occurs continuously. Finally, we confirmed the high efficiency of laser processing with femtosecond laser. In particular, Lava Ultimate, a ceramic resin composite material, showed the best processability when processed using a femtosecond laser.

Evaluation of Structural Performance of RC Beam with Different Depths to Lap Splice Detail of SD700 Headed Bar (SD700 확대머리 철근의 겹침이음 상세를 적용한 단차가 있는 RC 보의 구조성능 평가)

  • Lee, Ji-Hyeong;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.262-269
    • /
    • 2021
  • This paper conducts an evaluation of the structural performance of the lap splice detail of SD700 headed bar experiment for developing an RC beam with different depths joint details. The experiment variable is lap splice length, yield strength, and end anchorage of main reinforcements. For all specimens, a headed bar was applied to the main reinforcement of the beam with low depth (B2), and the beam with high depth (B1) was applied to the main reinforcement with two splice methods: straight headed bar and 90° hooked-headed bar. The experimental results were that specimens of applying SD500 and SD600 had the results of flexural fracture at the lap splice location, which maximum load was similar. For specimens of appling SD500, the 90° hooked-headed bar of B1, suppressed horizontal cracks in the lap splice section compared to the straight headed bar. Specimens of applying an SD 700 headed bar had the results of brittle anchorage failure. In addition, maximum load was increased with the lap splice length increasing. For specimens of applying SD700 headed bar, test for test maximum load/theoretical load for test development length/design development length were estimated to be 1.30~1.48 for the ACI 318-19 equation, and 1.14~1.30 for the KDS-2021 equation. Thus, ACI 318-19 equation had conservatively greater safety factors as estimated development lengththened.

A Study on the Error Rate of Non-destructive Rebar Detection Under Different Environmental Factors (환경적 요인에 따른 비파괴 철근 탐사의 오차율에 관한 연구)

  • Kang, Beom-Ju;Kim, Young-Hwan;Kim, Young-Min;Park, Kyung-Han;Oh, Hong-Seob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.506-513
    • /
    • 2021
  • The durability and safety of reinforced concrete structures significantly depend on the reinforcement conditions, concrete cover thickness, cracks, and concrete strength. There are two ways to accurately determine the information on reinforcing bars embedded in concrete - the local destructive method and the non-destructive rebar detection test. In general, the non-destructive rebar detection tests, such as the electromagnetic wave radar method, electromagnetic induction method, and radiation method, are adopted to avoid damage to the structural elements. The moisture content and temperature of concrete affect the dielectric constant, which is the electrical property of concrete, and cause interference in the non-destructive rebar detection test results. Therefore, in this study, the effects of the electromagnetic wave radar method and electromagnetic induction method have been analyzed according to the temperature and surface moisture content of concrete. Due to the technological advancement and development of equipment, the average error rate was less than 5% in the specimens at 24℃, irrespective of their operating principles. Among the tested methods, the electromagnetic induction method showed very high accuracy. The electromagnetic wave radar method indicated a relatively small error rate in the dry state than in the wet state, and exhibited a relatively high error rate at high temperatures. It was confirmed that the error could be reduced by applying the electromagnetic wave radar method when the temperature of the probe was low and in a dry state, and by using the electromagnetic induction method when the probe was in a wet state or at a high temperature.

A Research on Applicability of Drone Photogrammetry for Dam Safety Inspection (드론 Photogrammetry 기반 댐 시설물 안전점검 적용성 연구)

  • DongSoon Park;Jin-Il Yu;Hojun You
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.30-39
    • /
    • 2023
  • Large dams, which are critical infrastructures for disaster prevention, are exposed to various risks such as aging, floods, and earthquakes. Better dam safety inspection and diagnosis using digital transformation technologies are needed. Traditional visual inspection methods by human inspectors have several limitations, including many inaccessible areas, danger of working at heights, and know-how based subjective inspections. In this study, drone photogrammetry was performed on two large dams to evaluate the applicability of digital data-based dam safety inspection and propose a data management methodology for continuous use. High-quality 3D digital models with GSD (ground sampling distance) within 2.5 cm/pixel were generated by flat double grid missions and manual photography methods, despite reservoir water surface and electromagnetic interferences, and severe altitude differences ranging from 42 m to 99.9 m of dam heights. Geometry profiles of the as-built conditions were easily extracted from the generated 3D mesh models, orthomosaic images, and digital surface models. The effectiveness of monitoring dam deformation by photogrammetry was confirmed. Cracks and deterioration of dam concrete structures, such as spillways and intake towers, were detected and visualized efficiently using the digital 3D models. This can be used for safe inspection of inaccessible areas and avoiding risky tasks at heights. Furthermore, a methodology for mapping the inspection result onto the 3D digital model and structuring a relational database for managing deterioration information history was proposed. As a result of measuring the labor and time required for safety inspection at the SYG Dam spillway, the drone photogrammetry method was found to have a 48% productivity improvement effect compared to the conventional manpower visual inspection method. The drone photogrammetry-based dam safety inspection is considered very effective in improving work productivity and data reliability.

Occurrence Characteristics of Uranium and Radon-222 in Groundwater at ○○ Village, Yongin Area (용인 ○○마을 지하수내 우라늄 및 라돈-222의 산출특성)

  • Jeong, Chan Ho;Yang, Jae Ha;Lee, Yong Cheon;Lee, Yu Jin;Cho, Hyeon Young;Kim, Moon Su;Kim, Hyun Koo;Kim, Tae Seong;Jo, Byung Uk
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.261-276
    • /
    • 2016
  • The occurrence of natural radioactive materials such as uranium and radon-222 in groundwater was examined with hydrogeochemistry and geology at ○○ village in the Yongin area. Two rounds of 19 groundwater and 5 surface water sampling were collected for analysis. The range of pH value in groundwaters was 5.81 to 7.79 and the geochemical types of the groundwater were mostly Ca(Na)-HCO3 and Ca(Na)-NO3(Cl)-HCO3. Uranium and radon-222 concentrations in the groundwater ranged from 0.06 to 411 μg/L and from 5.56 to 903 Bq/L, respectively. Two deep groundwaters used as common potable well-water sources exceeded the maximum contaminant levels of the uranium and radon-222 proposed by the United States Environmental Protection Agency (US EPA). Three groundwater samples from residential areas contained unsuitable levels of uranium, and 12 groundwater samples were unsuitable due to radon-222 concentrations. Radioactive materials in the unsuitable groundwater are naturally occurring in a Jurassic amphibole- and biotite-bearing granitic gneiss. High uranium and radon-222 groundwater concentrations were only observed in two common wells; the others showed no relationship between bedrock geology and groundwater geochemical constituents. With such high concentrations of naturally occurring radioactive materials in groundwater, the affected areas may extend tens of meters for uranium and even farther for radon-222. Therefore, we suggest the radon-222 and the uranium did not originate from the same source. Based on the distribution of radon-222 in the study area, zones of higher radon-222 concentrations may be the result of diffusion through cracks, joint, or faults. Surface radioactivity and uranium concentrations in the groundwater show a positive relationship, and the impact areas may extend for ~200m beyond the well in the case of wells containing high concentrations of uranium. The highest uranium and thorium concentrations in rock samples were detected in thorite and monazite.