• 제목/요약/키워드: two cooperating robot manipulators

검색결과 9건 처리시간 0.031초

축소 차원 형상 공간을 이용한 협조작업 두 팔 로봇의 충돌 회피 경로 계획 (Collision-free path planning for two cooperating robot manipulators using reduced dimensional configuration space)

  • 최승문;이석원;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.904-907
    • /
    • 1996
  • In this paper, we propose an efficient collision-free path planning method of two cooperating robot manipulators grasping a common object rigidly. For given two robots and an object, the procedure is described which constructs the reduced dimensional configuration space by the kinematic analysis of two cooperating robot manipulators. A path planning algorithm without explicit representation of configuration obstacles is also described. The primary steps of the algorithm is as follows. First, we compute a graph which represents the skeleton of the free configuration space. Second, a connection between an initial and a goal configuration to the graph is searched to find a collision-free path.

  • PDF

무고정 조립작업을 위한 협조로봇 매니퓰레이터의 제어에 관한 연구 (A study on the control of two-cooperating robot manipulators for fixtureless assembly)

  • 최형식
    • 대한기계학회논문집A
    • /
    • 제21권8호
    • /
    • pp.1209-1217
    • /
    • 1997
  • This paper proposes the modeling of the dynamics of two cooperating robot manipulators performing the assembly job such as peg-in-hole while coordinating the payload along the desired path. The mass and moment of inertia of the manipulators and the payload are assumed to be unknown. To control the uncertain system, a robust control algorithm based on the computed torque control is proposed. Usually, the robust controller requires high input torques such that it may face input saturation in actual application. In this reason, the robust control algorithm includes fuzzy logic such that the magnitude of the input torque of the manipulators is controlled not to go over the hardware saturation while keeping path tracking errors bounded. A numerical example using dual three degree-of-freedom manipulators is shown.

무고정조립작업을 위한 협조 로봇 매니퓰레이터의 제어 (control of Two-Coopearationg Robot Manipulators for Fixtureless Assembly)

  • 최형식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.427-431
    • /
    • 1996
  • A modeling of the dynamics of two cooperating robot manipulators doing assembly job such as peg-in-hole while coordinating the payload along the desired path is proposed. The system is uncertain due to the unknown mass and moment of inertia of the manipulators and the payload. To control the system, a robust control algorithm is proposed. The control algorithm includes fuzzylogic. By the fuzzy logic, the magnitude of the input torque of the manipulators is controlled not to go over the hardware saturation with keeping path tracking errors bounded.

  • PDF

작업 적합도를 이용한 양팔 로봇의 운동 계획 (Motion Planning of Bimanual Robot Using Bimanual Task Compatibility)

  • 황면중;정성엽;이두용
    • 제어로봇시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.656-662
    • /
    • 2008
  • A cost-function based on manipulability and compatibility is designed to determine assembly motions of two cooperating manipulators. Assembly motions are planned along the direction maximizing performance indices to improve control performance of the two manipulators. This paper proposes bimanual task compatibility by defining cost functions. The proposed cost functions are applied and compared to the bimanual assembly task. The problem is formulated as a constrained optimization considering assembly constraints, position of the workpieces, and kinematics and redundancy of the bimanual robot. The proposed approach is evaluated with simulation of a peg-in-hole assembly with an L-shaped peg and two 3-dof manipulators.

Dynamic Modeling of Two Cooperating Flexible Manipulators

  • Kim, Jin-Soo;Uchiyama, Masaru
    • Journal of Mechanical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.188-196
    • /
    • 2000
  • In this paper, our aim is to develop a model for two cooperating flexible manipulators handling a rigid object by using lumped parameters. This model is in turn analyzed on MATLAB. In order to validate the model, a precise simulation model is developed using $ADAMS^{TM}$ (Automatic Dynamic Analysis of Mechanical System). Moreover, to clarify the discussion, the motions of a dual-arm experimental flexible manipulator are considered. Using the developed model, we control a robotic system with a symmetric hybrid position/force control scheme. Finally, experiments and simulations are performed, and a comparison of simulation results with experimental results is given to a rerify the validity of our model.

  • PDF

Motion Analysis of Objects Carried by Multiple Cooperating Manipulators with Frictional Contacts

  • Lee, Ji-Hong;Lee, Won-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1424-1429
    • /
    • 2004
  • In this paper a mathematical framework for deriving acceleration bounds from given joint torque limits of multiple cooperating robots are described. Especially when the different frictional contacts for every contact are assumed and the torque limits are given in 2-norm sense, we show that the resultant geometrical configuration for the acceleration is composed of corresponding parts of ellipsoids. Since the frictional forces at the contacts are proportional to the normal squeezing forces, the key points of the work includes how to determine internal forces exerted by each robot in order not to cause slip at the contacts while the object is carried by external forces. A set of examples composed of two robot systems are shown with point-contact-with-friction model and insufficient or proper degree of freedom robots.

  • PDF

Intelligent Load Distribution of Two Cooperating Robots for Transporting of Large Flat Panel Displays

  • Cho, Hyun-Chan;Kim, Doo-Yong
    • 반도체디스플레이기술학회지
    • /
    • 제4권2호
    • /
    • pp.25-32
    • /
    • 2005
  • This paper proposes a method for the intelligent load distribution of two cooperating robots(TCRs) using fuzzy logic. The proposed scheme requires the knowledge of the robots' dynamics, which in turn depend upon the characteristics of large flat panel displays(LFPDs) carried by the TCRs. However, the dynamic properties of the LFPD are not known exactly, so that the dynamics of the robots, and hence the required Joint torque, must be calculated for nominal set of the LFPD characteristics. The force of the TCRs is an important factor in carrying the LFPD. It is divided into external force and internal force. In general, the effects of the internal force of the TCRs are not considered in performing the load distribution in terms of optimal time, but they are essential in optimal trajectory planning; if they are not taken into consideration, the optimal scheme is no longer fitting. To alleviate this deficiency, we present an algorithm for finding the internal-force (actors for the TCRs in terms of optimal time. The effectiveness of the proposed system is demonstrated by computer simulations using two three-joint planner robot manipulators.

  • PDF

협조로보트 시스템의 동적 Decoupling과 안정도연구 (A Dynamic Decoupling of Two Cooperating Robot System and Stability Analysis)

  • 최형식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권1호
    • /
    • pp.37-43
    • /
    • 1996
  • This paper presents a new control scheme for decoupling the dynamics of two coordinating robot manipulators. A simple full-state feedback scheme with configuration dependent gains can be devised to decouple the system dynamics such that the dynamics of each arm and that of an object held by the two arms is independent of one another. A condition for stability is shown. The advantage of the proposed scheme is that the same control scheme can be applied both for the closed kinematic chain(object-grasping) case and open kinematic chain(no object-grasping) case.

  • PDF

Optimal Load Distribution of Transport ing System for Large Flat Panel Displays

  • Kim Jong Won;Jo Jang Gun;Cho Hyun Chan;Kim Doo Yong
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2005년도 추계 학술대회
    • /
    • pp.110-123
    • /
    • 2005
  • This paper proposes an intelligent method for the optimal load distribution of two cooperating robots(TCRs) using fuzzy logic. The proposed scheme requires the knowledge of the robots' dynamics, which in turn depend upon the characteristics of large flat panel displays(LFPDs) carried by the TCRs. However, the dynamic properties of the LFPD are not known exactly, so that the dynamics of the robots, and hence the required joint torque, must be calculated for nominal set of the LFPD characteristics. The force of the TCRs is an important factor in carrying the LFPD. It is divided into external force and internal force. In general , the effects of the internal force of the TCRs are not considered in performing the load distribution in terms of optimal time, but they are essential in optimal trajectory planning: if they are not taken into consideration, the optimal scheme is no longer fitting. To alleviate this deficiency, we present an algorithm for finding the internal-force factors for the TCRs in terms of optimal time. The effectiveness of the proposed system is demonstrated by computer simulations using two three-joint planner robot manipulators.

  • PDF