• Title/Summary/Keyword: two compartment model

Search Result 115, Processing Time 0.024 seconds

Simulating the Response of a 10-Storey Steel-Framed Building under Spreading Multi-Compartment Fires

  • Jiang, Jian;Zhang, Chao
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.389-396
    • /
    • 2018
  • This paper presents a numerical investigation on the structural response of a multi-story building subjected to spreading multi-compartment fires. A recently proposed simple fire model has been used to simulate two spreading multi-compartment fire scenarios in a 10-story steel-framed office building. By assuming simple temperature rising and distribution profiles in the fire exposed structural components (steel beams, steel column and concrete slabs), finite element simulations using a three-dimensional structural model has been carried out to study the failure behavior of the whole structure in two multi-compartment fire conditions and also in a standard fire condition. The structure survived the standard fire but failed in the multi-compartment fire. Whilst more accurate fire models and heat transfer models are needed to better predict the behaviors of structures in realistic fires, the current study based on very simple models has demonstrated the importance and necessity of considering spreadingmulti-compartment fires in fire resistance design of multi-story buildings.

A Study of Numerical Reproducibility for the Backdraft Phenomena in a Compartment using the FDS (FDS를 이용한 구획실 백드래프트 현상의 수치적 재현성에 관한 연구)

  • Park, Ji-Woong;Oh, Chang Bo;Choi, Byung Il;Han, Yong Shik
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.6
    • /
    • pp.6-10
    • /
    • 2013
  • A numerical reproducibility of the backdraft phenomena in a compartment was investigated. The prediction performance of two combustion models, the mixture fraction and finite chemistry models, were tested for the backdraft phenomena using the FDS code developed by the NIST. The mixture fraction model could not predict the flame propagation in a fuel-air mixture as well as the backdraft phenomena. However, the finite chemistry model predicted the flame propagation in the mixture inside a tube reasonably. In addition, the finite chemistry model predicted well the backdraft phenomena in a compartment qualitatively. The flame propagation inside the compartment, fuel and oxygen distribution and explosive fire ball behavior were well simulated with the finite chemistry model. It showed that the FDS adopted with the finite chemistry model can be an effective simulation tool for the investigation of backdraft in a compartment.

Development of Two-Dimensional Hydrogen Mixing Model in Containment Subcompartment Under the Severe Accident Conditions

  • Lee, Byung-Chul;Cho, Jae-Seon;Park, Goon-Cherl;Chung, Chang-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.663-668
    • /
    • 1996
  • A two-dimensional continuum model for the prediction of the hydrogen mixing phenomena in the containment compartment under the severe accident conditions is developed. The model could predict well the distribution of time-dependent hydrogen concentration for selected HEDL Experiment. For a simulation of these experiments, the hydrogen is mixed uniform over the test compartment. To predict the extent of non-uniform distribution, the dominant factors such as the geometrical shape of obstacle and velocity of source injection in mixing phenomena are investigated. If the obstacle disturbing the flow of gas mixture exists in the compartment, the uniform distribution of hydrogen may be not guaranteed. The convective circulation of gas flow is separately formed up and down of the obstacle position, which makes a difference of hydrogen concentration between the upper and lower region of the compartment. The recirculation flow must have a considerable mass flow rate relative to velocity of the source injection to sustain the well-mixed conditions of hydrogen.

  • PDF

Compatibility Study between Physiologically Based Pharmacokinetic (PBPK) and Compartmental PK Model Using Lumping Method: Application to the Voriconazole Case (럼핑법을 이용한 생리학 기반 약물동태모델 및 구획화 약물동태모델 상호 호환 연구: 보리코나졸 적용 연구)

  • Ryu, Hyo-jeong;Kang, Won-ho;Chae, Jung-woo;Yun, Hwi-yeol
    • Korean Journal of Clinical Pharmacy
    • /
    • v.31 no.2
    • /
    • pp.125-135
    • /
    • 2021
  • Background: Generally, pharmacokinetics (PK) models could be stratified into two models. The compartment PK model uses the concept of simple compartmentalization to describe complex bodies, and the physiologically based pharmacokinetic (PBPK) model describes the body using multi-compartment networking. Notwithstanding sharing a theoretical background in both models, there was still a lack of knowledge to enhance compatibility in both models. Objective: This study aimed to evaluate the compatibility among PBPK, lumping model and compartment PK model with voriconazole PK case study. Methods: The number of compartments and blood flow on each tissue in the PBPK model were modified using the lumping method, considering physiological similarities. The concentration-time profiles and area under the concentration-time curve (AUC) parameters were simulated at each model, assuming taken voriconazole oral 400 mg single dose. After that, those mentioned PK parameters were compared. Results: The PK profiles and parameters of voriconazole in the three models were similar that proves their compatibility. The AUC of central compartment in the PBPK and lumping model was within a 2-fold range compared to those in the 2- compartment model. The AUC of non-eliminating tissues compartment in the PBPK model was similar to those in the lumping model. Conclusion: Regarding the compatibility of the three PK models, the utilization of the lumping method was confirmed by suggesting its reliable PK parameters with PBPK and compartment PK models. Further case studies are recommended to confirm our findings.

VALVELESS PUMPING IN OPEN TANK SYSTEM USING ENERGY CONSERVING COMPARTMENT MODEL

  • Jung, Eun-Ok;Kim, Do-Wan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.961-987
    • /
    • 2012
  • A compartment model of the flow driven by pumping without valves (valveless pumping) in an open tank system is proposed. By the open tank system, we mean that two rigid cylindrical tanks are connected with an elastic tube. An incompressible fluid fills this system up to a certain level in tanks under the gravity. The compartment model for analyzing such open system is derived from the energy principle which will be called the energy conserving compartment model or shortly the ECCM. Based on this ECCM of valveless pumping, we explore the occurrence of directional net flow or directional net power by a specific excitation at an asymmetric part of the elastic tube. The interaction between deformable elastic tube and the fluid inside is considered in the ECCM. The reliability of the ECCMis investigated through some physical examples. The ECCM shows the existence of directional net power of the valveless pump system with open tanks and confirms that the direction and magnitude of the net power depend on the pumping frequency as well. Furthermore, the phase synchronization in time between the fluid pressure difference and the external pinching force over the pumping region is highly related to the direction of energy storing or net power.

Sensitivity and Uncertainty Analysis of Two-Compartment Model for the Indoor Radon Pollution (실내 라돈오염 해석을 위한 2구역 모델의 민감도 및 불확실성 분석)

  • 유동한;이한수;김상준;양지원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.4
    • /
    • pp.327-334
    • /
    • 2002
  • The work presents sensitivity and uncertainty analysis of 2-compartment model for the evaluation of indoor radon pollution in a house. Effort on the development of such model is directed towards the prediction of the generation and transfer of radon in indoor air released from groundwater. The model is used to estimate a quantitative daily human exposure through inhalation of such radon based on exposure scenarios. However, prediction from the model has uncertainty propagated from uncertainties in model parameters. In order to assess how model predictions are affected by the uncertainties of model inputs, the study performs a quantitative uncertainty analysis in conjunction with the developed model. An importance analysis is performed to rank input parameters with respect to their contribution to model prediction based on the uncertainty analysis. The results obtained from this study would be used to the evaluation of human risk by inhalation associated with the indoor pollution by radon released from groundwater.

Prediction of Sprinkler activation time using two-layer zonal model (Zone 모델을 이용한 스프링클러의 작동시간 예측)

  • 김명배;한용식;윤명오
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.15-18
    • /
    • 1996
  • A general description of sprinkler activation time in compartment-fire-generated smoke layers is made. For calculation of the time hot layer temperature is obtained from two-layer zonal model and time constant of sprinkler is measured. Upper-layer thickness at the instant of sprinkler activation is also presented with changes of opening area. The outputs of the present study provide inputs for the interaction modeling of sprinkler spray and compartment fire environment, which simulates fire suppression phenomena.

  • PDF

PREDICTION OF THE TRITIUM CONCENTRATION IN THE SOIL WATER AFTER THE OPERATION OF WOLSONG TRITIUM REMOVAL FACILITY

  • CHOI HEUI-JOO;LEE HANSOO;SUH KYUNG SUK;KANG HEE SUK
    • Nuclear Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.385-390
    • /
    • 2005
  • The effect of the Wolsong Tritium Removal Facility on the change of tritium concentration in the soil water was assessed by introducing a dynamic compartment model. For the mathematical modeling, the tritium in the environment was thought to come from two different sources. Three global tritium cycling models were compared with the natural background concentration. The dynamic compartment model was used to model the behavior of the tritium from the nuclear power plants at the Wolsong site. The source term for the dynamic compartment model was calculated with the dry and wet deposition rates. The area around the Wolsong nuclear power plants was represented by the compartments. The mechanisms considered in deriving the transfer coefficients between the compartments were evaporation, runoff, infiltration, hydrodynamic dispersion, and groundwater flow. We predicted what the change of the tritium concentration around the Wolsong nuclear power plants would be after future operation of the tritium removal facility to show the applicability of the model. The results showed that the operation of the tritium removal facility would reduce the tritium concentration in topsoil water quickly.

Prediction of sprinkler activation time in compartment fire (구획화재에서의 스프링클러 작동시간 예측 연구)

  • 김명배;한용식
    • Fire Science and Engineering
    • /
    • v.10 no.4
    • /
    • pp.13-18
    • /
    • 1996
  • A general description of sprinkler activation time in compartment-fire-generated smoke layers is made. For calculation of the time hot layer temperature is obtained from two-layer zonal model and time constant of sprinkler is measured. Upper-layer thickness at the instant of sprinkler activation is also presented with changes of opening area. The output of the present study provide inputs for the interaction modeling of sprinkler spray and compartment fire environment, which simulates fire suppression phenomena. Futhermore, experiments are performed in mock-up with gasoline pool fire in order to evaluate the reliability of the model.

  • PDF

An Experimental Study on The Coupling Path and Acoustic Modal Characteristics of Passenger Compartment - Trunk Coupled System (차실-트렁크 연성계의 연성경로 및 음향모드 특성에 관한 실험적 연구)

  • Kim, Gyoo-Beom;Lee, Jin-Woo;Lee, Jang-Moo;Kim, Seock-Hyun;Park, Dong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.607-611
    • /
    • 2000
  • Acoustic modal property of the vehicle passenger compartment is a very important factor which dominates vehicle interior noise in the low frequency range. In most real cars, trunk noise often transfers into the passenger compartment since the two cavities are acoustically coupled. This study identifies the major coupling path by examining the variation of the coupled acoustic modal frequencies and modes. An 1/2 size acryl compartment model is designed and manufactured for the measurement and analysis of coupled acoustic modes. Experimental result shows that package tray contributes to the coupling much more than the back seat and hole size of the package tray is an important design factor to control low frequency acoustic modes in the coupled system.

  • PDF