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VALVELESS PUMPING IN OPEN TANK SYSTEM USING

ENERGY CONSERVING COMPARTMENT MODEL

Eunok Jung and Do Wan Kim

Abstract. A compartment model of the flow driven by pumping without
valves (valveless pumping) in an open tank system is proposed. By the
open tank system, we mean that two rigid cylindrical tanks are connected
with an elastic tube. An incompressible fluid fills this system up to a
certain level in tanks under the gravity. The compartment model for
analyzing such open system is derived from the energy principle which will
be called the energy conserving compartment model or shortly the ECCM.
Based on this ECCM of valveless pumping, we explore the occurrence of

directional net flow or directional net power by a specific excitation at an
asymmetric part of the elastic tube. The interaction between deformable
elastic tube and the fluid inside is considered in the ECCM. The reliability
of the ECCM is investigated through some physical examples. The ECCM
shows the existence of directional net power of the valveless pump system
with open tanks and confirms that the direction and magnitude of the
net power depend on the pumping frequency as well. Furthermore, the
phase synchronization in time between the fluid pressure difference and
the external pinching force over the pumping region is highly related to
the direction of energy storing or net power.

1. Introduction

The valveless pumping, the Liebau effect, and the impedance pumping de-
scribe the common phenomenon that a net power can be made by simple pe-
riodic excitation on an asymmetric part of an elastic tube filled with an in-
compressible fluid. Recently, there have been trials to apply this phenomenon
to micro pumping devices [5, 11, 25] or to understand the valveless pumping
mechanism itself [2]. In case of a closed loop system of valveless pumping,
this net power causes a net flow in a preferential direction, while it can store
the potential energy in an open tank system under gravity. In this paper, we
consider an open valveless pump system that consists of two open rigid tanks
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with a connecting elastic tube and develop the energy conserving compartment
model (ECCM) of the system using the energy principle.

To understand the mechanism of valveless pumping phenomena discussed
by Liebau [14], many attempts have been made for recent decades in theoreti-
cal [1, 17, 21], experimental [4, 7, 8, 20, 22], and numerical [3, 6, 9, 12, 13] point
of view. Kenner [10] points out that the energy-driven source of fluid move-
ment, asymmetry of conduits, and an asymmetry of the course of movement
are conditions for valveless pumping. In closed loop systems, Bringley et al. [4]
consider a closed loop model composed of an elastic tube and a rigid tube to in-
vestigate the Liebau phenomenon under the low frequency of external pumping.
Similarly, in a closed loop system of a soft and a rigid tube, Manopoulos [17]
has derived a nonlinear hyperbolic partial differential equation to consider the
flow separation hydraulic losses at the divergent part of the stenosis at the
excitation region. Using the fluid-structure interaction formulation, Loumes
et al. [16] has calculated a multi-layer impedance pumping system based on
the resonance excitation. Olsson [19] has computed a lumped mass model for
valveless diffuser pump. Hikerson [8] has demonstrated that the net flow rate
is highly sensitive to pumping frequency, which has been commonly observed
by other researchers.

In case of an open valveless pumping system which consists of fluid tanks
and the connecting elastic tubes or rigid pipes, there are marked results by
Takagi, Propst, and Borzi. Takagi [23] reports that valveless pumping can
take place in real experiment and numerical simulations by proposing a model
of rigid pipes. Recently, Propst [21] proposed the necessary and sufficient
conditions for pumping on the nonlinear models of rigid pipe and fluid tanks
under gravity. Borzi [3] and Propst [21] have performed the comparison study
among models of open tank systems (an elastic tube and a rigid pipe) by means
of numerical simulations. They pay attention to the conditions under which
valveless pumping takes place.

The modeling and numerical computations become inevitable parts as tools
to analyze the mechanism of valveless pumping. There seems to be three impor-
tant ways to do that: first, using a specific averaging technique and modeling
the viscous effect, three-dimensional incompressible Navier-Stokes equations
are reduced to a one-dimensional hyperbolic type of partial differential equa-
tion under certain assumptions. Second, using the immersed boundary method
or numerical packages, the interaction problem between the incompressible
Navier-Stokes flow and the elastic tube is directly solved. Third, regarding the
entire fluid as a combination of lumps of fluid, a system of first order ordinary
differential equations for lumps of fluid is considered. Despite the fact that
much effort successfully has revealed the mechanism to explain the occurrence
of a directional net flow (or power) in valveless pumping, we still need to seek
the causes of the pumping direction change according to the external pumping
frequency.
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Based on the energy principle, a reliable compartment model of the open
valveless pump system under gravity is developed. The equations derived from
the energy principle on each compartment of the system thus satisfy the en-
ergy conserving property in the entire system, so that it is called the energy
conserving compartment model or briefly the ECCM. It is motivated by Jung’s
lumped model [9] which is a lumped model for a closed loop system of valveless
pumping. Based on the Ohm’s law and the definition of compliance, Jung’s
model is designed for the flow system in a closed loop with soft and stiff parts
on an elastic tube. However, the ECCM employs only the energy principle to-
gether with the constitutive law between the radial strain and its corresponding
pressure of the elastic tube under some feasible assumptions. Although Otte-
sen [20, 24] and Manopoulos [18] have used a constitutive law similar to the
ECCM, taking care of the time-dependent wall thickness of the elastic tube is
markedly different from them. Since the wall thickness plays a role in strength-
ening Young’s modulus, time dependent thickness of the tube wall should be
considered in our model.

In the most recent modeling of the open tank system by Timmermann and
Ottesen [24], using the non-stationary Bernoulli principle along a streamline in
a tank, boundary conditions for the dimensionless first order hyperbolic sys-
tem are introduced. To validate their model, they compare the gravitationally
driven oscillating flow with experiment data. They added to a marked explana-
tion for the mechanism for valveless flow in an open tank system by introducing
the horizontal slope frequencies. In the same spirit, we first show the reliabil-
ity of the ECCM. Physical phenomena including the hydrostatic pressure are
revived using the ECCM. Additionally, it is proved that the entire energy over
the system is conserved by introducing the elastic energy of the tube, the en-
ergy caused by the external pumping, and the energy decaying by the friction
force on the tube wall. It is shown numerically that the magnitude of a stored
energy including its direction is proportional to the difference of fluid levels in
both tanks. Particularly, of interest is to find out that the direction of energy
storing is closely related to the phase synchronization between the pressure
difference and the external pinching force over the pumping region.

Main topics are addressed in the following order: Section 2 describes the
derivation of the ECCM of valveless pumping in the open tank system under
gravity. The reliability and energy conserving property of our ECCM is in-
vestigated and validated in Section 3. Section 4 is written for the discussion
on numerical results of valveless pumping effect. Conclusions are written in
Section 5.

2. Energy conserving compartment model of valveless pumping in
the open tank system

The schematic diagram of the open valveless pump system is illustrated in
Fig. 1. There are two cylindrical tanks, CL and CR, with one end open and the
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corresponding cross sectional areas, AL and AR, respectively. Both tanks have
rigid walls and fluid levels, HL(t) and HR(t) at time t. The fluid inside tanks
is assumed to be affected downward by gravity g. Two rigid open tanks are
connected with a cylindrical elastic tube which has a finite wall thickness and
preserves its volume during deformation. An incompressible fluid fills the entire
system and the fluid motions are generated by a periodic pumping applied on
an asymmetric location of the elastic tube.

Cylindrical rigid wall

Cylindrical elastic tube

Lumped fluid in a compartment

v0 v1 vi−1 vi vn+1 vn−1 vn

Q0 Q1 Qi−1 Qi Qi+1 Qn−1 Qn

HL(t) QL

Patm

Patm

QR HR(t)

Patm

g

g

vR

vL

C0

Cn−1

P0
Pn−1

CL

CR

Pi−1
Pi

Ci−1

Ci

Figure 1. Schematic diagram of the proposed compartment
model with two open tanks under gravity: Ci denotes i-th
compartment of elastic tube, Pi is the pressure in the lumped
fluid in the corresponding compartment Ci, Qi−1 and Qi rep-
resent flux respectively at the left and right inlets of Ci, and
vi is the representative velocity corresponding to Qi. Particu-
larly, the subscripts, L and R in the form of •L and •R means
the correspondence to the left and right tank. For example,
vL and vR are the representative velocity of fluids at the left
and right tanks, respectively.

Let n denote the number of compartments of the elastic tube, Ci for i =
0, 1, . . . , n− 1 be i-th compartment, Pi for i = 0, 1, . . . , n− 1 the representative
pressure of fluid in the compartment Ci, and Qi for i = 1, . . . , n − 1 the flux
between Ci−1 and Ci as illustrated in Fig. 1. Particularly, Q0 and Qn are flux
between CL and C0 and between Cn−1 and CR, respectively.

To develop the compartment model of valveless pumping with two open
tanks under gravity, it is important that the physically meaningful flux con-
ditions have to be derived at two junctions between the elastic tube and two
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tanks. For the purpose of deriving such conditions, the principle of energy
transfer will be employed, i.e., the time rate of change in energy (or work) of
the lumped fluid inside a compartment is equivalent to the power done by it.

We assume that the flow direction moving from the left to the right tank
is defined as positive. In line with this assumption, it should be emphasized
that the force acting on a lump of fluid in the compartment model is assumed
only one dimensional. This means that the elastic force acting on the lumped
fluid has to be transferred to the fluid pressure via the volume change of the
incompressible fluid. This feature is revealed well in the middle of verifying the
energy conserving property in Section 3.

With the energy principle, the flux between adjacent elastic compartments
will be modeled first in sub-Section 2.1 and then secondly the motion of fluid
between the tank and its connected elastic compartment will be modeled in
sub-Section 2.2. In sub-Section 2.3, using the elastic force generated by the
radial displacement of a cylindrical tube with finite length, we also derive the
relationship between the pressure of fluid and the radius of the cylindrical tube
in the same elastic compartment under the condition that the mass of tube is
negligible.

2.1. Flux model between adjacent compartments in the elastic tube

We consider the fluid flow Qi(t) between two consecutive compartments in
the elastic tube, Ci−1 and Ci for i = 1, . . . , n− 1. The length of each compart-
ment Ci is denoted by li. Assume that vi represents the velocity corresponding
to Qi and Ai designates the cross sectional area of the lumped fluid in Ci.

Let us consider the control compartment C̄i = C+
i−1 ∪ C−

i where C−

i and

C+
i denote the left and right halves of i-th compartment Ci, respectively. The

conceptual diagram for C̄i is illustrated in Fig. 2. We define a fluid volume V̄i

in C̄i as

(1) V̄i ≡
1

2
li−1 Ai−1 +

1

2
liAi =

1

2
(Vi−1 + Vi)

which is regarded as an artificial volume of fluid associated with the flux Qi.
Then, the representative velocity of the fluid in V̄i can be defined as

(2) vi ≡
Qi

Āi

,

where the representative area Āi for V̄i has to be defined as follows

(3) Āi ≡
li−1 Ai−1 + li Ai

li−1 + li

since the volume of V̄i has to equal that of the fluid in C̄i. From the definitions,
(1) and (3), we can obtain the following identities

(4) V̄i = Āi l̄i, l̄i ≡
1

2
(li−1 + li).
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On the other hand, since the fluid is assumed to be incompressible, the volume
conservation of fluid can be written in the following form

(5) V̇i = Qi −Qi+1, i = 0, 1, . . . , n− 1,

provided Vi ≡ Ai li, the volume of fluid in the compartment Ci.

equal volume of fluid

area area

area

l̄i

V̄i = Āi l̄i

Qi Qi+1Qi−1

vivi−1 vi+1

viAi−1

vi Āi

Ai

Pi−1 Pi

C−

i−1 C+
i−1 C−

i
C+

i

CiCi−1
C̄i

Figure 2. Compounded (or control) compartment C̄i be-
tween Ci−1 and Ci: V̄i, Āi, and l̄i are the equal volume to C̄i,
the cross sectional area of the equal volume, and the length of
C̄i, respectively.

If ei stands for the kinetic energy of the fluid in C̄i, then the volume and
velocity of fluid in C̄i, defined respectively in (1) and (2), leads to the following
representation for ei

(6) ei =
1

2
ρ V̄i v

2
i =

1

2
ρQ2

i

l̄2i
V̄i

.

Considering the viscosity effect, we introduce the friction force Fi exerted on
the wall of the cylindrical tube by the fluid with volume V̄i and it is transformed
to an equivalent pressure difference on Āi approximated by Hagen-Poiseuille
laminar flow, i.e.,

(7) Fi = 8 π µ l̄i vi,

where µ is the dynamic viscosity of fluid.
We need here to remark something about the compartment model. The

kinetic energy ei is apparently affected by the elastic force from the tube which
is applied perpendicularly to the inside fluid in the compounded compartment
C̄i. Since the fluid in the compartment model has only one-dimensional forces,
the elastic force has to be embedded into the fluid pressure in a reasonable
way. Under some assumptions, the relationship between the fluid pressure and
the elastic pressure induced by the tension of the elastic tube can be modeled.
Details are addressed in sub-Section 2.3. It should be pointed out that the fluid
pressure Pi is the uni-directional pressure along the compartment.
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From the relationship between the energy and power of the fluid in C̄i, we
have

ėi = −(Pi Āi) vi + (Pi−1 Āi) vi −Fi vi

= (Pi−1 − Pi) Āi vi − 8 π µ l̄i v
2
i

= (Pi−1 − Pi)Qi − 8 π µQ2
i

l̄i
Ā2

i

.(8)

Due to the incompressibility of the fluid in (5) and the definition (1) of the
fluid volume inside C̄i, the time rate of change for ei in (6) becomes

ėi = ρQi Q̇i ∆̄i +
1

2
ρQ2

i l̄
2
i

(

−
˙̄Vi

V̄ 2
i

)

= ρQi Q̇i ∆̄i −
1

4
ρQ2

i (Qi−1 −Qi+1)
∆̄i

V̄i

,(9)

provided we define

(10) ∆̄i ≡
V̄i

Ā2
i

.

As a consequence of (8) and (9), the flux Qi satisfies

(11) Q̇i =
1

ρ ∆̄i

(Pi−1 − Pi) +
1

4 V̄i

Qi (Qi−1 −Qi+1)−
8 π µ

ρ Āi

Qi

for i = 1, 2, . . . , n− 1.

2.2. Flux model between the tank and elastic tube

Two rigid tanks are attached to the marginal compartments, C0 and Cn−1,
located at both ends of the elastic tube. The levels of fluid in CL and CR

are denoted by HL(t) and HR(t), respectively. We shall derive the conditions
for the flux, Q0(t) and Qn(t), at the bottom outlets of tanks to the tube. In
tanks, assume that the inertia force of the fluid is dominant enough to ignore
the friction force due to viscosity. In addition, the fluid in a tank is assumed
to move up and down with the same velocity as if it is a single body, i.e., the
velocities of the lump of fluid in tanks, vL(t) and vR(t), are functions of time t
only for the incompressibility of the fluid and the rigidity of cylindrical tanks.

In the similar way as in Section 2.1, we define compounded compartments,
C̄L ≡ CL ∪C−

0 and C̄R ≡ C+
n−1 ∪CR. Then, the total energy eL of the fluid in

C̄L becomes

(12) eL =

∫ HL(t)

0

1

2
ρ v2L(t)AL dy +

∫ HL(t)

0

ρ g y AL dy +
1

4
ρ V0 v

2
0 ,

where g designates the gravitational constant. Actually, the terms on the right
hand side represent the kinetic energy of fluid in CL, the potential energy of
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fluid in CL, and the kinetic energy of fluid in C−

0 in order. Similarly, for the
fluid in C̄R, we have the energy eR

(13) eR =

∫ HR(t)

0

1

2
ρ v2R(t)AR dy +

∫ HR(t)

0

ρ g y AR dy +
1

4
ρ Vn−1 v

2
n.

Using the relationship that

(14) Q0(t) = A0 v0 = AL vL(t),

we can calculate the terms on the right hand side in (12) to be

eL =
1

2
ρAL HL(t) v

2
L(t) +

1

2
ρ g ALH2

L(t) +
1

4
ρQ2

0(t)
l0

A0(t)

=
1

2
ρQ2

0(t)

[
HL(t)

AL

+
l0

2A0(t)

]

+
1

2
ρ g AL H2

L(t).(15)

Similarly, the energy eR in (13) can be rewritten as

eR =
1

2
ρAR HR(t) v

2
R(t) +

1

2
ρ g AR H2

R(t) +
1

4
ρQ2

n(t)
ln−1

An−1(t)

=
1

2
ρQ2

n(t)

[
HR(t)

AR

+
ln−1

2An−1(t)

]

+
1

2
ρ g AR H2

R(t)(16)

using the analogous formula to (14),

(17) Qn(t) = An−1(t) vn(t) = AR vR(t).

Furthermore, the representative fluid velocities in two tanks must satisfy

(18) vL(t) = −ḢL and vR(t) = ḢR,

so that the incompressibility in (5) leads to the time rate of changes for eL and
eR,

ėL = ρQ0 Q̇0 ∆̄L +
1

2
ρQ2

0

[

ḢL

AL

−
V̇0

2A2
0

]

+ ρ g AL HL ḢL

= ρQ0 Q̇0 ∆̄L +
1

2
ρQ2

0

[

−
vL
AL

−
V̇0

2A2
0

]

− ρ gHLQ0

= ρQ0 Q̇0 ∆̄L −
1

2
ρQ2

0

[
Q0

A2
L

+
Q0 −Q1

2A2
0

]

− ρ gHL Q0,(19)

where

(20) ∆̄L(t) =
VL(t)

A2
L

+
V0

2A2
0(t)

,

and

ėR = ρQn Q̇n ∆̄R +
1

2
ρQ2

n

[

ḢR

AR

−
V̇n−1

2A2
n−1

]

+ ρ g AR HR ḢR
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= ρQn Q̇n ∆̄R +
1

2
ρQ2

n

[

vR
AR

−
V̇n−1

2A2
n−1

]

+ ρ gHR Qn

= ρQn Q̇n ∆̄R −
1

2
ρQ2

n

[

−
Qn

A2
R

+
Qn−1 −Qn

2A2
n−1

]

+ ρ gHR Qn,(21)

where

(22) ∆̄R(t) =
VR(t)

A2
R

+
Vn−1

2A2
n−1(t)

.

It is of worth to note that sign changes take place at two terms between (19)
and (21) due to the definition of positive direction of flows in our setting which
is shown in (18).

The time rate of change for the energy eL equals the work per unit time
done by the surrounding air pressure P atm on the top surface of the tank and
the fluid pressure P0 at C−

0 as well as the friction force on the tube wall in C−

0

as in (8), i.e., on the compounded compartment C̄L,

ėL = −(P0 A0) v0 + (P atm AL) vL − 8 πµQ2
0

l0
2A2

0

= (−P0 + P atm)Q0 − 8 πµQ2
0

l0
2A2

0

.(23)

Similarly, on the compounded compartment C̄R related to the right tank, we
have

ėR = (Pn−1 An−1) vn−1 − (P atm AR) vR − 8 πµQ2
n

ln−1

2A2
n−1

= (Pn−1 − P atm)Qn − 8 πµQ2
n

ln−1

2A2
n−1

.(24)

On the flux Q0(t), comparing (19) and (23), we conclude

Q̇0 =
1

ρ ∆̄L

[
P atm − P0(t) + ρ gHL(t)

]

+
1

4

Q0

∆̄L

[
2Q0

A2
L

+
Q0 −Q1

A2
0

]

−
4 πµ

ρ ∆̄L

Q0
l0
A2

0

,(25)

while the equations of (21) and (24) yield the following model for Qn(t):

Q̇n =
1

ρ ∆̄R

[
−P atm + Pn−1(t)− ρ g HR(t)

]

+
1

4

Qn

∆̄R

[

−
2Qn

A2
R

+
Qn−1 −Qn

A2
n−1

]

−
4 πµ

ρ ∆̄R

Qn

ln−1

A2
n−1

.(26)

Based on the energy principle, thus far, we have derived the equations for
flux as in (11), (25), and (26). To complete the modeling of valveless pumping,
we have to build up equations for the representative fluid pressure in compart-
ments.
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dθ
θ

r

h
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li

Young's Modulus = E

s(θ)

n(θ)

τ s(θ + dθ)

− τ s(θ)

r + 1
2
h

P w
n

Figure 3. Schematic diagram for the pressure Pw induced
from the circumferential tension τ of elastic tube with length
li.

2.3. Pressure model

The elastic energy ought to apparently contribute somehow to the dynamics
of the flow in our model. To understand such a mechanism, we have to reveal
how the circumferential tension of the elastic tube is transferred to a part of
the fluid pressure inside the elastic tube under some assumptions for the tube
as in the reference [15].

Fig. 3 illustrates the structure of the i-th compartment Ci, which consists
of a cylindrical elastic tube with thickness hi(t) and Young’s modulus E and
its cylindrical room with radius ri(t). Let Pw(t) be the equilibrium pressure
added to the inside wall of the tube induced from the tension τ of the elastic
tube in the compartment Ci. Along the center circle of the tube cross section,
we define the curvilinear coordinate system {n, s} where n is the outward unit
normal vector and s is made by rotating n with angle π/2.

To derive the connection equation between Pw(t) and the fluid pressure
P (t) inside tube, it is assumed during the deformation of the elastic tube that

AS1 the elastic tube in Ci maintains its cylindrical shape,
AS2 there is no change in the length li of Ci,
AS3 the volume of the elastic tube in Ci remains constant,
AS4 the mass of elastic tube in Ci is negligible.

In general, the tube initial thickness hi(0) is much smaller than the initial
radius ri(0) in valveless pumping, so that the above assumptions, AS1, AS2,
AS3, and AS4 seems to be valid.
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We use symbols without subscript for brevity, for example, r(t) instead of
ri(t). The first three assumptions, AS1, AS2, and AS3 above induce the
following identity for any time t ≥ 0

(27) (r(t) + h(t))2 − r(t)2 = D2
0

for some constant D0 which can be given by the initial conditions.
If the deformation of the tube takes place at infinitesimal time dt, then the

corresponding infinitesimal variations of Pw, r, h, and τ are denoted by dPw,
dr, dh, and dτ , respectively. Considering a small piece of the tube ranging from
the angle θ to θ + dθ as depicted in Fig. 3, the following force balance holds

(28) (Pw + dPw)(r+ dr) dθ li n(θ)+ (τ + dτ) (s(θ+ dθ)− s(θ)) (h+ dh) li = 0

since the Pw(t) is the balancing force against the circumferential elastic tension
τ and, from our assumptions, the infinitesimal angle dθ is independent of the
variation dt during deformation. Since dθ is infinitesimal, it is also true that

(29) s(θ + dθ)− s(θ) = −n dθ.

From the infinitesimal calculus and the identity (29), the equation in (28)
results in

(30) (Pw dr + r dPw)− (τ dh+ h dτ) = 0,

or, equivalently

(31) d(Pw r) = d(τ h).

From the definition of Young’s modulus, we have

(32) E =
dF/AF

d∆/∆
,

where dF is the variation of total tension force on the section AF (shadow
face in Fig. 3) on which the tension τ acts under the deformation described
above, and ∆ is the length of the center circle of tube cross section before
deformation occurs and d∆ means the variation of ∆ after deformation. The
relevant quantities in the definition can be written as

dF

AF

=
(τ + dτ) (h+ dh) li − τ h li

h li
=

d(τ h)

h
,(33)

d∆

∆
=

((r + dr) + 1
2 (h+ dh)) dθ − (r + 1

2h) dθ

(r + 1
2 h) dθ

= d log

(

r +
1

2
h

)

.(34)

Therefore, as a result of (32), (33), and (34), the following equation is derived

(35) d(τ h) = E hd log

(

r +
1

2
h

)

.
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On the other hand, the area conserving condition (27) for the tube cross section
produces the differential equation

(36)

(

r +
1

2
h

)

dh+ h d

(

r +
1

2
h

)

= 0, or (r + h) dh+ h dr = 0.

Combining these equivalent equations, we have

(37) d log

(

r +
1

2
h

)

= −
1

h
dh =

dr

r + h
.

As a consequence of (31), (35), and (37), we obtain the desired equation for
Pw(t) as follows:

(38) Ṗw =

(
E h

r + h
− Pw

)
ṙ

r
=

1

2

(
E h

r + h
− Pw

)
V̇

V

provided that V (t) is the volume of the room inside i-th compartment Ci.
If we assume that the fluid pressure inside the compartment Ci is denoted

by Pi(t) and both the atmospheric pressure P atm and the external pumping
force P ext

i (t) are applied to the outside wall of the tube in Ci, then negligible
mass assumption AS4 for the elastic tube implies

(39) Pw
i (t) = Pi(t)− P ext

i (t)− P atm for i = 0, 1, . . . , n− 1.

Therefore, from the equation (38) and incompressibility (5), the differential
equation for Pw becomes

(40) Ṗw
i =

1

2

(
E hi

ri + hi

− Pw
i

)
Qi −Qi+1

Vi

for i-th compartment, i = 0, 1, . . . , n − 1. Here, it should be emphasized that
the elastic force and the fluid pressure are mutually transferred to each other
via the equations, (39) and (40), resulting from our assumptions.

We have thus far derived sets of first order differential equations for Qi(t),
Pi(t), HL(t), and HR(t). To complete the system, additional first order differ-
ential equations for ri(t)’s are needed to calculate areas and volumes of elastic
compartments. Fortunately, it has been given already to satisfy the incom-
pressibility of the fluid in (5).

A system of ordinary differential equations in our energy conserving com-
partment model can be addressed with the solutions Pw

i (t), Qi(t), ri(t), HL(t),
and HR(t) as follows:

• Pressure equations

(41) Ṗw
i =

1

2

(
E hi

ri + hi

− Pw
i

)
Qi −Qi+1

Vi

, i = 0, 1, . . . , n− 1,

• Flux equations

Q̇0 =
1

ρ ∆̄L

[
−Pw

0 (t)− P ext
0 (t) + ρ g HL(t)

]
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+
1

2
Q0

[
Q0

VL

∆L

∆̄L

+
Q0 −Q1

V0

∆0

2 ∆̄L

]

−
8 πµ

ρ

Q0

A0

∆0

2 ∆̄L

,(42)

Q̇i =
1

ρ ∆̄i

[
Pw
i−1(t) + P ext

i−1(t)− Pw
i (t)− P ext

i (t)
]

+
1

2
Qi

Qi−1 −Qi+1

2 V̄i

−
8 π µ

ρ

Qi

Āi

, i = 1, 2, . . . , n− 1,(43)

Q̇n =
1

ρ ∆̄R

[
Pw
n−1(t) + P ext

n−1(t)− ρ gHR(t)
]

+
1

2
Qn

[

−
Qn

VR

∆R

∆̄R

+
Qn−1 −Qn

Vn−1

∆n−1

2 ∆̄R

]

−
8 πµ

ρ

Qn

An−1

∆n−1

2 ∆̄R

,(44)

• Incompressibility equations

ḢL = −
Q0

AL

, ḢR =
Qn

AR

,(45)

ṙi =
ri
2

Qi −Qi+1

Vi

for i = 0, 1, . . . , n− 1,(46)

• Massless condition for the elastic tube

(47) Pi(t) = Pw
i (t) + P atm + P ext

i (t) for i = 0, 1, . . . , n− 1,

• State equation for the elastic tube

(48) hi(t) =
√

D2
0 + r2i (t)− ri(t) for i = 0, 1, . . . , n− 1,

where the symbols used above are listed as follows:

∆L =
VL(t)

A2
L

, ∆0 =
V0

A2
0(t)

,(49)

∆̄L =
VL(t)

A2
L

+
V0

2A2
0(t)

= ∆L +
1

2
∆0,(50)

∆̄i =
V̄i

Ā2
i

, i = 1, 2, . . . , n− 1,(51)

∆R =
VR(t)

A2
R

, ∆n−1 =
Vn−1

A2
n−1(t)

,(52)

∆̄R =
VR(t)

A2
R

+
Vn−1

2A2
n−1(t)

= ∆R +
1

2
∆n−1.(53)

Here, we note that the atmospheric pressure P atm plays no role, so that it can
be set zero without loss of generality. Important symbols and notations are
listed in Table 1 where all dimensions are represented by CGS unit.
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Table 1. Symbols and notations: the values inside bracket
are fixed in all computations.

Symbol Description CGS unit

CL (CR) the compartment of the left (right) tank
HL(t) (HR(t)) the fluid level in CL (CR) cm

rL (rR) the radius of the left (right) tank cm
dL (dR) the diameter of the left (right) tank cm
AL (AR) the cross sectional area of the fluid in CL (CR) cm2

n the number of compartments in elastic tube
Ci the i-th compartment of elastic tube from the left tank
li the length of Ci cm
L the total length of elastic tube cm

Pi(t) the representative pressure of fluid in Ci [Pi(0) = 0] dyne/cm2

Qi(t) the flux between fluids in Ci−1 and Ci [Qi(0) = 0] cm3/s
ri(t) the radius of fluid in Ci [ri(0) = 0.5] cm
hi(t) the thickness of elastic tube in Ci cm
ρ the fluid density [= 1.0] g/cm3

µ the fluid viscosity [= 0.01] cm2/s
g the gravitational acceleration [= 980] g cm/s2

E the Young’s modulus of the elastic tube dyne/cm2

3. Reliability and energy conserving property of the ECCM

The ECCM in (41)-(48) is derived in the previous section based on the energy
principle under feasible assumptions. Assuming there is no external pumping
(P ext(t) = 0), we attest the validity in the following ways:
[Hydrostatic fluid pressure] If we consider the case that the levels of fluid
in both tanks are initially equal, i.e., HL(0) = HR(0) at initial state and the
radius of the elastic tube is assumed to be initially constant, ri(0) = r0 as
if there is no fluid inside, i.e., Pw

i (0) = 0, then it is expected that the fluid
levels in tanks, HL(t) and HR(t), eventually move down a little to a certain
level H∞ < HL(0) = HR(0) at the equilibrium state. Due to the total volume
conservation modeled in (45) and (46), the tube has to get a little swollen
compared to the initial shape to make up for the loss of fluid volume from two
tanks, i.e., ri(t) approaches r∞ > ri(0) for each i. In this case, the hydrostatic
fluid pressure P∞ inside the elastic tube satisfies

(54) P∞ = Pi(∞) = P atm + ρ g H∞.

In fact, it can be justified by the ECCM described in (41)-(46). If the
steady state exists, then the equations, (45) and (46) leads to the consequence
that Qi(t) approaches 0 for all i = 0, 1, . . . , n as time goes on. Consequently,
Pw
i (t)’s reach some constant value Pw

∞
as anticipated from (41). At the same

time, the equations, (42), (43), and (44) enable us to predict that Pw
0 (t) and

Pw
n−1(t) approach ρ gH∞. Since there is no external pumping, we have Pw

i (t) =
Pi(t)− P atm so that the hydrostatic pressure identity in (54) holds.
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Figure 4. Oscillating flows influenced by the tank
sizes: tank diameters dL = dR = 20, 40, 60, 80, the tube
length L = 20 with 5 even compartments (5C), the Young’s
modulus E = 1.0× 108, the initial thickness of tube compart-
ments hi(0) = 0.1, and the initial heights of fluid in tanks
HL(0) = 30, HR(0) = 10.
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Figure 5. Oscillating flows influenced by the length
of elastic tube: the tube length L = 10, 20, 30, 40 with
compartments of length 2, tank diameters dL = dR = 40, the
Young’s modulus E = 1.0 × 108, the initial thickness of tube
compartments hi(0) = 0.1, and the initial heights of fluid in
tanks HL(0) = 30, HR(0) = 10.
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[Oscillating flow] Initially different fluid levels in two tanks approaches an
equal level at the equilibrium state. If the fluid level in the left tank is initially
higher than that in the right tank, then there occur an oscillating flow between
two tanks which will stop eventually because of the friction on the tube wall.

We show that the ECCM can realize the oscillating flow between tanks in
a variety of situations. The fluid starts moving from the left tank toward the
right one at the first instance. The frictional force on the elastic tube wall acts
on the moving fluid during oscillations and thus all fluid flux Qi(t)’s decay to
zero. In order to show this phenomenon, we first investigate the variation of
fluid levels, HL(t) and HR(t), in tanks and its corresponding flux Qi(t)’s as a
function of time for various n.

If the tank size gets bigger with the same initial tube radius, then the initial
frequency of oscillating flow becomes decreasing. In fact, ignoring the friction
of the fluid on the wall and assuming the tube is stiff, it can be shown that the
frequency of oscillating flow caused by the gravity is approximately proportional
to the ratio of radii, rtube/rtank as it goes small. This pattern of oscillating flow
is shown in Fig. 4. According to the result in Fig. 4, the oscillating frequency
decreases when the cross sectional area of tanks is wider but there is almost no
oscillating when the equal tank radius is bigger than 30 (cm) within 60 seconds.
The value of the maximum flux increases as the tank radius gets bigger. On the
other hand, we find out in Fig. 5 that regardless of the tube length variation the
flow reaches the steady state within 30 seconds in case where dL = dR = 40.
On the contrary to the previous case, the maximum flux decreases as the tube
length L increases. This result is attributed to the friction force on the tube
wall due to the viscosity.

Remark that, in all computations, the parameters, ρ, g, and µ, and the initial
conditions, Pi(0), Qi(0), and ri(0), are fixed as in Table 1. Other parameters
and initial conditions of dependent variables such as hi(0), HL(0), and HR(0)
can be altered in various cases.
[Energy conserving property] The energy conserving is very important for
stability of the model. In our system, several types of energy are involved, for
example, the kinetic energies of the fluid in tube and tanks, the elastic potential
energy of the tube, the external pumping energy, and the loss energy due to the
viscosity. We show that these energies are balanced. In particular, the elastic
energy turns out to be an essential part for the balancing.

The focus from now on is laid on the energy conservation property associ-
ated with the elastic energy of the vibrating tube. It is the main feature to
understand how the elastic power generated by the expansion or contraction
of the elastic tube transfers to the power acting on the fluid. In fact, dur-
ing the derivation of the ECCM, the elastic energy is implicitly considered via
the transformed fluid pressure. Since the mass of the elastic tube is assumed
negligible in the model, the elastic energy consists of only a potential energy.

To explore how the elastic energy acts on the fluid pressure, we consider the
kinetic energy of the fluid inside the tube, the potential energy of the elastic
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tube, the sum of the kinetic and potential energies of the fluid in both tanks,
which are denoted by efluid(t), eelastic(t), etankL (t), and etankR (t), respectively,
at time t. Then, these energies are expressed as follows:

efluid(t) =
1

2
ρQ2

0(t) ∆̄0 +

n−1∑

i=1

1

2
ρQ2

i (t) ∆̄i(t) +
1

2
ρQ2

n(t) ∆̄n,(55)

eelastic(t) =

n−1∑

i=0

∫ t

0

Pw
i (τ) (2 π ri(τ) li) ṙ(τ)dτ,(56)

etankL (t) =
1

2
ρQ2

0(t)∆L +
1

2
ρ g ALH2

L(t),(57)

etankR (t) =
1

2
ρQ2

n(t)∆R +
1

2
ρ g AR H2

R(t),(58)

where we define symbols

(59) ∆̄0 ≡
1

2

V0

A2
0

, ∆̄n ≡
1

2

Vn−1

A2
n−1

.

It should be noted that the elastic power induced from the energy in (56) can
be calculated as

d

dt
eelastic =

n−1∑

i=0

2 π ri ṙi li P
w
i (t) =

n−1∑

i=0

Pw
i (t)

d

dt
(π li r

2
i (t))

=

n−1∑

i=0

(Qi −Qi+1) (Pi(t)− P atm − P ext
i (t))

= −(Q0 −Qn)P
atm +

n−1∑

i=0

(Qi −Qi+1) (Pi − P ext
i ).(60)

On the other hand, referring to the identities, (8), (23), and (24), the energy
involving the entire fluid becomes

d

dt
(efluid + etankL + etankR )

= (−P0 + P atm)Q0 +

n−1∑

i=1

(Pi−1 − Pi)Qi + (Pn−1 − P atm)Qn

−

[

8 π µQ2
0(t)

∆̄0

A0
+

n−1∑

i=1

8 π µQ2
i (t)

∆̄i

Āi

+ 8 π µQ2
n(t)

∆̄n

An−1

]

= (Q0 −Qn)P
atm −

n−1∑

i=0

(Qi −Qi+1)Pi −

n∑

i=0

8 π µQ2
i (t)

∆̄i

Āi

,(61)
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provided we identify Ā0 = A0 and Ān = An−1. Therefore, if etotal is assumed
to be the total energy of this system including elastic energy, i.e.,

(62) etotal ≡ efluid + eelastic + etankL + etankR ,

then it satisfies the following energy balance at time t

(63) ėtotal(t) = −

n−1∑

i=0

(Qi −Qi+1)P
ext
i (t)

︸ ︷︷ ︸

power done by pumping

−

n∑

i=0

8 π µQ2
i (t)

∆̄i

Āi

︸ ︷︷ ︸

power done by friction

.

Practically, the external pressure P ext
i (t) is applied on a combination of

compartments, for example, Cpump =
⋃

k∈Λext Ck for some compartment index
set Λext ⊂ {0, 1, . . . , n− 1}, so that we have in this case

(64) ėtotal(t) = −
∑

k∈Λext

(Qk −Qk+1)P
ext
k (t)−

n∑

i=0

8 π µQ2
i (t)

∆̄i

Āi

.

In the energy balance equation (63), the external pumping pressure P ext
i (t)

on Ci adds the power to the fluid inside Ci in the manner of (Qi−Qi+1)P
ext
i (t).

Therefore, the total energy added to the system by the external pumping can
be calculated by using the equation

(65) ėpump =

n−1∑

i=0

(Qi −Qi+1)P
ext
i (t).

Contrary to the pumping power, there exists the friction power appearing at
the last term in (63), which is always negative to cause the energy loss. By the
energy conserving in the ECCM, we mean that the entire energy of the system
including the energy loss by the friction power is conserved in the sense that,
if we define the friction energy

(66) ėfric =

n∑

i=0

8 π µQ2
i (t)

∆̄i

Āi

,

then we obtain the energy conservation

(67)
d

dt

(
efluid + eelastic + etankL + etankR + epump + efric

)
= 0.

4. Numerical results on valveless pumping effects

To make the valveless pumping power available and controllable to mechan-
ical devices, what we have to do first is to understand why a preferential di-
rection of the net power occurs at a specific frequency of the periodic external
pumping. Assume that the external pumping P ext

k is applied on the compart-
ments Ck’s for k ∈ Λext for a pumping index set Λext ⊂ {0, 1, . . . , n− 1} which
indicates the pumping region. If the pumping region index Λext is given, then,
as an external pumping on Λext, the following type of time dependent periodic
non-negative function with frequency ω is employed:



980 EUNOK JUNG AND DO WAN KIM

Table 2. Parameters and initial conditions for computing
HR −HL as the frequency ω ranges from 0 [Hz] to 60 [Hz].

parameter value [CGS unit]
n 20 Compartments
L 40
E 1.0× 107

dL = dR 5
HL(0) = HR(0) 20

ri(0) 0.5
hi(0) 0.1

Pmax 1.01325× 105(= Patm

10 )

(68) P ext
k (t) ≡







Pmax

2
(1− cos(2 π ω t)) , for all k ∈ Λpump,

0, otherwise.

If a function f(t) fluctuate at sufficiently large time, we define its asymptotic
average as

(69) f(t) = lim
t→∞

1

T

∫ t+T

t

f(τ) dτ,

where T = 1/ω is the period of time. Assume HL and HR are the asymptotic
averages of HL(t) and HR(t), respectively. When using the external pumping
function given in (68) and parameters in Table 2, the influences on HR−HL by
the pumping location and the width of pumping region are shown in Fig. 6. The
external pumping is located at some compartments on the left half of the elastic
tube. The behavior of HR −HL has no consistency for pumping locations (see
Fig. 6(a)) while there appears a similar pattern of the difference HR −HL for
the variation of the width of the pumping region (see Fig. 6(b)). Therefore, we
can anticipate that the pumping location is more important factor for valveless
pumping than the width of pumping region. Among these cases, we choose one
case where Cpump = C2 ∪C3 to study in detail the features of producing a net
power in two open tanks connected by the elastic tube. Fig. 7 shows the graph
of HR −HL in the chosen case on which the peaks are numbered from (1) to
(10).

It is well observed that either direction for energy storing can take place in
this figure. Of more interest is the graph in Fig. 8 which illustrates the stored

energy in asymptotic average, 1
α
(etankR (t)− etankL (t)) for some scaling constant

α. The scaling factor α is chosen inspired by the average potential energy
difference of two tanks

(70) α =
1

2
g AL (HL +HR).
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Then, as seen in Fig. 8, the stored potential energy is proportional to HR −
HL. It can be a salient feature that HR−HL and the stored energy is perfectly
correlated. However, it is not obvious since the difference of average energy in
two tanks are induced from the energy equations, (57) and (58). According to
the computational results, it is obvious that

(71) HR −HL =
1

α

(
etankR − etankL

)
,

where etankL and etankR mean the asymptotic average of etankL (t) and etankR (t),
respectively.

While inspecting the factor related to the direction of net power using nu-
merical experiments, we find out that the fluid pressure difference, particularly
over the pumping region, plays an important role in determining the direction
of net power to store the energy in the direction of a preferential tank. For the
purpose of proposing a quantitative index to judge the net power direction in-
cluding its magnitude, we define the pressure difference of fluids in Ck induced
from the external pumping P ext

k as shown in Fig. 9:

(72) (∆P )k(t) ≡

∫

Ck

Px dx = P̄k+1(t)− P̄k(t),

where P̄k(t) means the fluid pressure interpolation at the site where Qk is
defined and it should be defined with energy conserving on the control volume
V̄k at the position of Qk such that

(73) P̄k(t) V̄k(t) = Pk−1(t)

(
1

2
Vk−1(t)

)

+ Pk(t)

(
1

2
Vk(t)

)

.

An index Dpower correlated to the net pumping power is defined as the asymp-
totic average of the sum of (∆P )k(t)×P ext

k (t) over the pumping compartments:

(74) Dpower ≡
∑

k∈Λext

(∆P )k(t)P ext
k (t).

In our case, since P ext
k (t) for any pumping index k is the same function of

t, P ext(t), as shown in (68), we have

(75) Dpower = ∆P (t)P ext(t),

where (∆P )(t) =
∑

k∈Λext(∆P )k(t).
The meaning of the indexDpower can be viewed as the phase synchronization

between ∆P and P ext. In other words, if the excitation timing on the pump-
ing region synchronizes with the pressure difference on it, then the net power
becomes positive. On the contrary, if the skew-synchronization occurs, the
negative power takes place. Numerical computations shows well these features
as illustrated in Fig. 10. A series of graphs at 10 peaks are plotted consecu-
tively. The odd columns represent graphs of the phase synchronization between
(∆P )(t) and P ext(t) at every peak numbered with (1) through (10) and the
graphs in even columns show the multiplication of corresponding two factors,
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(∆P )(t) and P ext(t), to view the size of signed area above and below zero. In
Table 3, the sign and magnitude of Dpower indicate the direction and strength
of the net power, respectively, at the tagged peaks except the transient states
(5) and (7) in Fig. 7. The index Dpower can be also interpreted as a kind of
covariance in time between ∆P (t) and the external pumping P ext(t) on the
pumping compartments. Consequently, the phase synchronization of (∆P )(t)
with the external pumping is an important factor to produce and maintain the
directional net power.
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Ck−1 Ck Ck+1

Pk−1 Pk Pk+1

P̄k+1P̄k

P ext
k (t)

P̄k(t) =
Pk−1Vk−1 + PkVk

Vk−1 + Vk

(∆P )k(t) = P̄k+1(t) − P̄k(t)

Figure 9. The definition of pressure difference (∆P )k is
illustrated on the k-th compartment Ck to which the exter-
nal pumping P ext

k (t) is applied. The average of the product
(∆P )k(t)P

ext
k (t) constitutes the index Dpower.

Table 3. Comparison of the index Dpower and HR −HL at
each peak.

peak number external pumping frequency (ω) index Dpower [×109] HR −HL

(1) 10.6 −1.0143 −0.4947
(2) 10.7 +2.1062 +1.5794
(3) 21.1 −1.4345 −0.6632
(4) 21.6 +2.7677 +2.4324
(5) 31.2 −0.0579 (transient) +0.2842
(6) 32.6 +0.7643 +0.7718
(7) 41.8 +2.7812 (transient) +1.0849
(8) 43.4 −2.7266 −2.2331
(9) 51.7 +4.0763 +2.2615
(10) 53.8 −3.6763 −2.4610

5. Conclusion

To understand the valveless pumping phenomena, we have developed the
energy conserving compartment model (ECCM) based on the energy principle.
Computations including reliability tests for the ECCM are performed in various
cases. It is our numerical conclusion for the valveless pumping effect that the
energy stored in the valveless pumping system under gravity is attributed to
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Figure 10. Phase synchronization between the pressure dif-
ference (∆P )(t) and external pumping P ext(t) on the pumping
location Cpump in cases tagged with (1) to (10) in Fig. 7.

the directional net power caused by the simple external pumping on the elastic
tube. Moreover, it is also revealed that the stored energy is proportional to
the difference of asymptotic average levels of fluid in two tanks. Finally, an
indicator for anticipating the direction of net power generated by the external
pumping is discovered. It is closely related to the direction of the net power
as well as its magnitude. In fact, the indicator proposed can be regarded as a
kind of phase synchronization or covariance between the pressure difference in
time and the external pumping wave over the pumping region. Synchronized
phases trigger the positive net power (from the left tank to the right) while
anti-synchronized phases generate the negative net power (from the right tank
to the left). With the computationally discovered facts, we want to control the
power of the valveless pumping. Perfectly controlling will enable us to develop
the micro-machine.
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