1 |
Mitsani D, Nguyen MH, Shields RK, et al. Prospective, observational study of voriconazole therapeutic drug monitoring among lung transplant recipients receiving prophylaxis: factors impacting levels of and associations between serum troughs, efficacy, and toxicity. Antimicrob Agents Chemother 2012;56(5): 2371-7.
DOI
|
2 |
Shin NY, Park MH, Shin YG. Application of physiologically based pharmacokinetic (PBPK) modeling in prediction of pediatric pharmacokinetics. Yakhak Hoeji 2015;59(1):29-39.
DOI
|
3 |
Qi F, Zhu L, Li N, Ge T, Xu G, Liao S. Influence of different proton pump inhibitors on the pharmacokinetics of voriconazole. Int J Antimicrob Agents 2017;49(4):403-9.
DOI
|
4 |
Li M, Zhu L, Chen L, Li N, Qi F. Assessment of drug-drug interactions between voriconazole and glucocorticoids. J Chemother 2018;30(5):296-303.
DOI
|
5 |
Zhang Y, Zhao S, Wang C, Zhou P, Zhai S. Application of a physiologically based pharmacokinetic model to characterize timedependent metabolism of voriconazole in children and support dose optimization. Front Pharmacol 2021;12:636097.
DOI
|
6 |
Park WB, Kim NH, Kim KH, et al. The effect of therapeutic drug monitoring on safety and efficacy of voriconazole in invasive fungal infections: a randomized controlled trial. Clin Infect Dis 2012;55(8): 1080-7.
DOI
|
7 |
Chu HY, Jain R, Xie H, et al. Voriconazole therapeutic drug monitoring: retrospective cohort study of the relationship to clinical outcomes and adverse events. BMC Infect Dis 2013;13(1):105.
DOI
|
8 |
Sandherr M, Maschmeyer G. Pharmacology and metabolism of voriconazole and posaconazole in the treatment of invasive aspergillosis-review of the literature. Eur J Med Res 2011;16(4): 139-44.
DOI
|
9 |
Ahmed TA. Pharmacokinetics of drugs following IV bolus, IV infusion, and oral administration, In; Basic pharmacokinetic concepts and some clinical applications, London: IntechOpen, 2015: 53-5.
|
10 |
International Commission on Radiological Protection. Basic anatomical and physiological data for use in radiological protection: reference values 2002. Available from https://journals.sagepub.com/doi/pdf/10.1177/ANIB_32_3-4. Accessed January 10, 2021.
|
11 |
Poulin P, Theil FP. Prediction of pharmacokinetics prior to in vivo studies. 1. mechanism-based prediction of volume of distribution. J Pharm Sci 2002;91(1):129-56.
DOI
|
12 |
Li X, Frechen S, Moj D, et al. A physiologically based pharmacokinetic model of voriconazole integrating time-dependent inhibition of CYP3A4, genetic polymorphisms of CYP2C19 and predictions of drug-drug interactions. Clin Pharmacokinet 2020; 59(6):781-808.
DOI
|
13 |
Elmokadem A, Riggs MM, Baron KT. Quantitative systems pharmacology and physiologically-based pharmacokinetic modeling with mrgsolve: a hands-on tutorial. CPT Pharmacometrics Syst Pharmacol 2019;8(12):883-93.
DOI
|
14 |
Yanni SB, Annaert PP, Augustijns P, Ibrahim JG, Benjamin Jr DK, Thakker DR. In vitro hepatic metabolism explains higher clearance of voriconazole in children versus adults: role of CYP2C19 and Flavin-containing monooxygenase 3. Drug Metab Dispos 2010; 38(1):25-31.
DOI
|
15 |
Friberg LE, Ravva P, Karlsson MO, Liu P. Integrated population pharmacokinetic analysis of voriconazole in children, adolescents, and adults. Antimicrob Agents Chemother 2012;56(6):3032-42.
DOI
|
16 |
Theuretzbacher U, Ihle F, Derendorf H. Pharmacokinetic/pharmacodynamic profile of voriconazole. Clin Pharmacokinet 2006;45(7): 649-63.
DOI
|
17 |
Andes D, Pascual A, Marchetti O. Antifungal therapeutic drug monitoring: established and emerging indications. Antimicrob Agents Chemother 2009;53(1):24-34.
DOI
|
18 |
Sinha VK, Snoeys J, Osselaer NV, Peer AV, Mackie C, Heald D. From preclinical to human-prediction of oral absorption and drugdrug interaction potential using physiologically based pharmacokinetic (PBPK) modeling approach in an industrial setting: a workflow by using case example. Biopharm Drug Dispos 2012;33(2):111-21.
DOI
|
19 |
Chen Y, Jin JY, Mukadam S, Malhi V, Kenny JY. Application of IVIVE and PBPK modeling in prospective prediction of clinical pharmacokinetics: strategy and approach during the drug discovery phase with four case studies. Biopharm Drug Dispos 2012;33(2):85-98.
DOI
|
20 |
Jones HM, Parrott N, Jorga K, Lave T. A novel strategy for physiologically based predictions of human pharmacokinetics. Clin Pharmacokinet 2006;45(5):511-42.
DOI
|
21 |
Nestorov IA, Aarons LJ, Arundel PA, Rowland M. Lumping of whole-body physiologically based pharmacokinetic models. J Pharmacokin Biopharm 1998;26(1):21-46.
DOI
|
22 |
Pilari S, Huisinga W. Lumping of physiologically-based pharmacokinetic models and a mechanistic derivation of classical compartmental models. J Pharmacokinet Pharmacodyn 2010;37(4):365-405.
DOI
|
23 |
Zane NR, Thakker DR. A physiologically based pharmacokinetic model for voriconazole disposition predicts intestinal first-pass metabolism in children. Clin Pharmacokinet 2014;53(12):1171-82.
DOI
|
24 |
Anderson ME. Physiologically based pharmacokinetic (PB-PK) models in the study of the disposition and biological effects of xenobiotics and drugs. Toxicol Lett 1995;82-83:341-8.
DOI
|
25 |
Liu P, Mould DR. Population pharmacokinetic analysis of voriconazole and anidulafungin in adult patients with invasive aspergillosos. Antimicrob Agents Chemother 2014;58(8):4718-26.
DOI
|
26 |
Willmann S, Hohn K, Edginton A, et al. Development of a physiology-based whole-body population model for assessing the influence of individual variability on the pharmacokinetics of drugs. J Pharmacokinet Pharmacodyn 2007;34(3):401-31.
DOI
|
27 |
Muto C, Shoji S, Tomono Y, Liu P. Population pharmacokinetic analysis of voriconazole from a pharmacokinetic study with immunocompromised Japanese pediatric subjects. Antimicrob Agents Chemother 2015;59(6):3216-23.
DOI
|
28 |
Lee JE, Kim SL, Kim YJ, Kim HS, Kim JY. Analysis of dose changing pattern for voriconazole and recommendation. J Kor Soc Health-syst Pharm 2018;35(3):292-309.
DOI
|
29 |
Cao Y, Jusko WJ. Applications of minimal physiologically-based pharmacokinetic models. J Pharmacokinet Pharmacodyn 2012; 39(6):711-23.
DOI
|
30 |
Peters SA, Hultin L. Early identification of drug-induced impairment of gastric emptying through physiologically based pharmacokinetic (PBPK) simulation of plasma concentration-time profiles in rat. J Pharmacokinet Pharmacodyn 2008;35(1):1-30.
DOI
|
31 |
Jones H, Rowland, YK. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacometrics Syst Pharmacol 2013;2(8):1-12.
|
32 |
Luu KT, Kraynov E, Kuang B, Vicini P, Zhong WZ. Modeling, simulation, and translation framework for the preclinical development of monoclonal antibodies. AAPS J 2013;15(2):551-8.
DOI
|
33 |
Lin Z, Gehring R, Mochel JP, Lave T, Riviere JE. Mathematical modeling and simulation in animal health-Part II: principles, methods, applications, and value of physiologically based pharmacokinetic modeling in veterinary medicine and food safety assessment. J Vet Pharmacol Ther 2016;39(5):421-38.
DOI
|
34 |
Southwood R, Fleming VH, Huckaby G. Two-compartment models, In: Concepts in clinical pharmacokinetics, 7th ed, Maryland: American Society of Health-System Pharmacists Inc., 2018: 81-7.
|
35 |
Rowland M, Peck C, Tucker G. Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol 2011;51(1):45-73.
DOI
|
36 |
Teorell T. Kinetics of distribution of substances administered to the body. Arch Intern Pharmacodyn Ther 1937;57:205-25.
|
37 |
Urso R, Blardi P, Giorgi G. A short introduction to pharmacokinetics. Eur Rev Med Pharmacol Sci 2002;6(2-3):33-44.
|
38 |
Aarons L. Physiologically based pharmacokinetic modelling: a sound mechanistic is needed. Br J Clin Pharmaccol 2005;60(6):581-3.
DOI
|
39 |
Bischoff KB, Dedrick RL, Zaharko DS, Longstreth JA. Methotrexate pharmacokinetics. J Pharm Sci 1971;60(8):1128-33.
DOI
|
40 |
Bernareggi A, Rowland ML. Physiologic modeling of cyclosporine kinetics in rat and man. J Pharmacokin Biopharm 1991;19(1):21-50.
DOI
|
41 |
Okino MS, Mavrovouniotis ML. Simplification of mathematical models of chemical reaction systems. Chem Rev 1998;98(2):391-408.
DOI
|
42 |
Charnick SB, Kawai R, Nedelman JR, Lemaire M, Niederberger W, Sato H. Physiologically based pharmacokinetic modeling as a tool for drug development. J Pharmacokin Biopharm 1995;23(2):217-29.
DOI
|
43 |
Walsh TJ, Anaissie EJ, Denning DW, et al. Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis 2008;46(3):327-60.
DOI
|
44 |
Badiee P, Hashemizadeh Z. Opportunistic invasive fungal infections: diagnosis & clinical management. Indian J Med Res 2014;139(2):195-204.
|
45 |
Kang WH, Hwang JA, Chae JW, Kwon KI, Yun HY. The role change of drug metabolism and pharmacokinetics research in the drug development. Yakhak Hoeji 2019;63(3):121-30.
DOI
|
46 |
Khojastech SC, Wong H, Hop CECA. Pharmacokinetics, In: Drug metabolism and pharmacokinetics quick guide, New York: Springer, 2011: 8-11.
|
47 |
Sager JK, Kishorkumar BB, Ashok MK, Genesh RS, Aruna RR. Solubility and dissolution rate enhancement of antifungal voriconazole by hot melt extrusion and development of sustained release tablets. World J Pharma Res 2014;3(4):1827-53.
|
48 |
Khalil F, Laer S. Physiologically based pharmacokinetic modeling: methodology, applications, and limitations with a focus on its role in pediatric drug development. J Biomed Biotechnol 2011;2011:1-13.
DOI
|
49 |
US Food and Drug Administration. Guidance for Industry: In Vitro Drug Interaction Studies-Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions 2020. Available from http://www.fda.gov/media/134582/download. Accessed January 10, 2021.
|
50 |
Gerlowski LE, Jain RK. Physiologically based pharmacokinetic modeling: principles and applications. J Pharma Sci 1983;72(10): 1103-27.
DOI
|