• 제목/요약/키워드: twisted file

검색결과 4건 처리시간 0.022초

Adaptive movement가 twisted file의 내구성과 작업 시간에 미치는 영향 (Effect of adaptive movement on durability and working time of twisted file)

  • 이상호;박소라;조경모;박세희;김진우
    • 구강회복응용과학지
    • /
    • 제35권1호
    • /
    • pp.20-26
    • /
    • 2019
  • 목적: Wire를 꼬아서 제조한 twisted file (TF)이 개발된 이래, 최근에는 기존 twisted file의 내구성 및 절삭 효과를 증진시키기 위하여 구동방식의 변형을 준 TF-adaptive movement가 소개되었다. 본 연구의 목적은 TF-adaptive movement가 twisted file의 내구성에 미치는 영향을 조사하는 것이다. 연구 재료 및 방법: J자 모양의 근관 형태를 가지는 레진 모형 근관에 twisted file을 이용하여 근관 형성 시 adaptive movement (TFA군)와 continuous rotation movement (TFC군)의 두 가지 구동 방식 하에서 파일의 내구성을 비교하고, 각각의 모형 근관을 형성하는데 소요된 시간을 측정하였다. TF 파일을 사용할 때마다 치과용 현미경으로 TF의 날풀림(unwind) 또는 변형 및 파절 여부를 관찰하여 그때까지 TF로 형성한 모형 근관의 수를 기록하고, 사진을 촬영하였다. 또한 twisted file의 첨단(D0)에서 날풀림이 발생한 지점까지의 직선 거리를 측정했다. 실험 결과는 0.05의 유의수준에서 Mann-Whitney U test로 분석했다. 결과: 파일의 파절은 두 실험군 모두에서 발생하지 않았으며, TFC군은 TFA군에 비하여 날풀림이 발생하기 전까지 형성한 모형 근관의 수가 통계적으로 유의하게 적었으며, 모형 근관을 작업장까지 성형, 확대하는데 걸린 시간은 TFA군이 TFC군에 비해 유의하게 길었다. 날풀림이 발생한 지점의 위치는 TFC군과 TFA군 사이에 유의한 차이가 발견되지 않았다. 결론: Twisted file을 adaptive movement mode로 사용하여 근관을 형성하면 날풀림이 발생하기 전까지 확대할 수 있는 근관의 수가 증가했으나, 작업장까지 근관을 형성하는데 필요한 시간이 유의하게 증가했다. Adaptive movement와 continuous rotary movement 간에 기구의 날풀림이 발생하는 위치에는 유의한 차이가 발견되지 않았다.

Influence of glide path size and operating kinetics on time to reach working length and fracture resistance of Twisted File adaptive and Endostar E3 nickel-titanium file systems

  • Ramyadharshini, Tamilkumaran;Sherwood, Inbaraj Anand;Vigneshwar, V Shanmugham;Prince, Prakasam Ernest;Vaanjay, Murugadoss
    • Restorative Dentistry and Endodontics
    • /
    • 제45권2호
    • /
    • pp.22.1-22.10
    • /
    • 2020
  • Objectives: This study investigated the influence of glide path size and operating kinetics on the time to reach the working length and the fracture resistance of Twisted File (TF) and Endostar E3 files. Materials and Methods: A total of 120 mandibular single-rooted premolars were selected. Two methods of kinetic motion (TF adaptive and continuous rotary motion) and file systems (TF and Endostar E3) were employed. The files were used in root canals prepared to apical glide path sizes of 15, 20, and 25. The time taken to reach the working length and the number of canals used before the instrument deformed or fractured were noted. Fractured instruments were examined with scanning electron microscopy. Results: The TF system took significantly more time to reach the working length than the Endostar E3 system. Both systems required significantly more time to reach the working length at the size 15 glide path than at sizes 20 and 25. A greater number of TFs than Endostar E3 files exhibited deformation, and a higher incidence of instrument deformation was observed in adaptive than in continuous rotary motion; more deformation was also observed with the size 15 glide path. One TF was fractured while undergoing adaptive motion. Conclusions: No significant difference was observed between continuous rotary and adaptive motion. The TF system and adaptive motion were associated with a higher incidence of deformation and fracture. Apical glide path sizes of 20 and 25 required significantly less time to reach the working length than size 15.

Incidence of apical crack formation and propagation during removal of root canal filling materials with different engine driven nickel-titanium instruments

  • Ozyurek, Taha;Tek, Vildan;Yilmaz, Koray;Uslu, Gulsah
    • Restorative Dentistry and Endodontics
    • /
    • 제42권4호
    • /
    • pp.332-341
    • /
    • 2017
  • Objectives: To determine the incidence of crack formation and propagation in apical root dentin after retreatment procedures performed using ProTaper Universal Retreatment (PTR), Mtwo-R, ProTaper Next (PTN), and Twisted File Adaptive (TFA) systems. Materials and Methods: The study consisted of 120 extracted mandibular premolars. One millimeter from the apex of each tooth was ground perpendicular to the long axis of the tooth, and the apical surface was polished. Twenty teeth served as the negative control group. One hundred teeth were prepared, obturated, and then divided into 5 retreatment groups. The retreatment procedures were performed using the following files: PTR, Mtwo-R, PTN, TFA, and hand files. After filling material removal, apical enlargement was done using apical size 0.50 mm ProTaper Universal (PTU), Mtwo, PTN, TFA, and hand files. Digital images of the apical root surfaces were recorded before preparation, after preparation, after obturation, after filling removal, and after apical enlargement using a stereomicroscope. The images were then inspected for the presence of new apical cracks and crack propagation. Data were analyzed with ${\chi}^2$ tests using SPSS 21.0 software. Results: New cracks and crack propagation occurred in all the experimental groups during the retreatment process. Nickel-titanium rotary file systems caused significantly more apical crack formation and propagation than the hand files. The PTU system caused significantly more apical cracks than the other groups after the apical enlargement stage. Conclusions: This study showed that retreatment procedures and apical enlargement after the use of retreatment files can cause crack formation and propagation in apical dentin.

Pile Contact Depth Effects in Rubbed Polyimide(PI) Films

  • 김기정;권혁민;이상문;이철구;곽무선;김봉수
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.398-398
    • /
    • 2010
  • To determine the molecular directionality of PI chains depending on rubbing condition, we measured the angle resolved near edge X-ray absorption fine structure (NEXAFS) spectra at C K-edge of the rubbed PI films. Twisted nematic mode PI (PI-TN) and in plane switching mode PI (PI-IPS) were introduced to examine the effect of rubbing conditions on the chain directionality. The average tilt angle a of the PI molecules was estimated through the measured intensity change of $C=C\;{\pi}^*$ in NEXAFS C K-edge spectrum by controlling the stage speed and the pile contact depth. After rubbing, the irregular molecular direction changed to a regular direction with a molecular tilt angle of $51.2^{\circ}$ for PI-TN and $49.6^{\circ}$ for PI-IPS at the rubbing condition of the roll speed of 1000 rpm, stage speed of 50 mm/sec, and file contact depth of 0.3 mm. The molecular tilt angle $\alpha$ was linearly decreased in the PI-TN and PI-IPS samples with increasing depth of the pile contact.

  • PDF