• Title/Summary/Keyword: twist condition

Search Result 61, Processing Time 0.032 seconds

Welding behavior between Zn-coated steel plate and free cutting carbon steel rod by Nd:YAG laser beam (Nd:YAG 레이저빔을 이용한 아연도금강판(SECC)과 쾌삭강봉(SUM24L)의 용접에 관한 연구)

  • 노영태;김병철;김도훈;윤갑식
    • Laser Solutions
    • /
    • v.4 no.3
    • /
    • pp.30-39
    • /
    • 2001
  • This work was tamed out to apply a laser welding technique in joining between a Zn coated low carbon steel plate(SECC) and a free cutting carbon steel shaft(SUM24L) with or without W coating. Experiments were carried out and analysed by applying the FD(factorial design)method to obtain the optimum Laser welding condition. Optical microscopy, SEM, TEM and XRD analyses were performed in order to observe the microstructures in the fusion zone and the HAZ. Mechanical properties of the welded specimens were examined by microhardness test, tensile test and twist test. There was no flawed Zn in the fusion zone by EDS analysis. This means that during the welding process, Zn gas could be eliminated by appropriate shielding gas flow rate and butt welding gap. Ni coating itself did not influence on the tensile strength and hardness. However, twist bending strength and the weld depth of the Ni-coated free cutting carbon steel were lower as compared with those of the uncoated free cutting carbon steel. It was attributed to a lower absorbance of laser beam to the shin Ni surface. According to the results of the factorial design tests, the twist bending strength of welded specimens was primarily affected by pulse width, laser power, frequency and speed.

  • PDF

A Study on New Twist-Diamond Wire Characteristics for Improving Processing Performance (트위스트 다이아몬드 와이어의 성능향상을 위한 특성평가에 관한 연구)

  • Park, Chang-Yong;Kweon, Hyun-Kyu;Peng, Bo;Jung, Bong-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.26-33
    • /
    • 2016
  • In this study, a new method to develop a fixed diamond wire for silicon wafer machining by the multi-wire cutting method was developed. The new twist diamond wire has improved performance with high breaking strength and chip flutes structure. According to these characteristics, the new twist diamond wire can be used in the higher speed multi-wire cutting process with a long lifetime. Except the design of the new structure, the twist diamond wire is coating by electroless-electroplating process. It is good for reducing breakage and the falling-off of diamond grains. Based on the silicon material removal mechanism and performance of the wire-cutting machine, the optimal processing condition of the new twist diamond wire has been derived via mathematical analysis. At last, through the tensile testing and the machining experiments, the performance of the twist diamond wire has been obtained to achieve the development goals and exceed the single diamond wire.

The Mechanical Propertis of Wool-like Fabrics Using Composite Textured Yarn (복합가공사를 이용한 Wool-like 직물의 역학적성질)

  • Park, Myung-Soo;Yoon, Jong-Ho
    • Fashion & Textile Research Journal
    • /
    • v.5 no.4
    • /
    • pp.408-412
    • /
    • 2003
  • The micro structure of POY was modified and a wool-like touch yarn of composite fibers with different shrinkage was made. With this yarn 12 different fabrics with wool like touch were prepared. The characteristic physical property changes of the fabrics examined are as follows: 1. In all cases, the initial high shrinkage stages were observed in hot water treatment and the 3D images of complex multilayer of typical doubling fibers with different shrinkage were also observed in hot air treatment of 170C. 2. The tensile strength changes of satin and plain fabrics with the change of twist count showed similar behavior. However, WT's were slightly higher and RT's was lower in twill and satin fabrics than those in plain fabric. 3. Since a slight decrease of B's of twill fabric found with increasing twist count under given experimental condition, it could be influenced on the anti-drape stiffness was decreased and flexibility was increased. 4. A significant decrease of G values was observed in the twist count 800-1000 T.P.M However, in the twist count higher than 1000 T.P.M G values observed were kept nearly constant. 5. MIU of plain and twill fabrics showed a drastic decrease at the twist count higher than 1000 T.P.M.

Design and Vibratory Loads Reduction Analysis of Advanced Active Twist Rotor Blades Incorporating Single Crystal Piezoelectric Fiber Composites

  • Park, Jae-Sang;Shin, Sang-Joon;Kim, Deog-Kwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.18-33
    • /
    • 2008
  • This paper presents design optimization of a new Active Twist Rotor (ATR) blade and conducts its aeroelastic analysis in forward flight condition. In order to improve a twist actuation performance, the present ATR blade utilizes a single crystal piezoelectric fiber composite actuator and the blade cross-sectional layout is designed through an optimization procedure. The single crystal piezoelectric fiber composite actuator has excellent piezoelectric strain performance when compared with the previous piezoelectric fiber composites such as Active Fiber Composites (AFC) and Macro Fiber Composites (MFC). Further design optimization gives a cross-sectional layout that maximizes the static twist actuation while satisfying various blade design requirements. After the design optimization is completed successfully, an aeroelastic analysis of the present ATR blade in forward flight is conducted to confirm the efficiency in reducing the vibratory loads at both fixed- and rotating-systems. Numerical simulation shows that the present ATR blade utilizing single crystal piezoelectric fiber composites may reduce the vibratory loads significantly even with much lower input-voltage when compared with that used in the previous ATR blade. However, for an application of the present single crystal piezoelectric actuator to a full scaled rotor blade, several issues exist. Difficulty of manufacturing in a large size and severe brittleness in its material characteristics will need to be examined.

Measurement of Dynamic Contact Angle of Yarn for Evaluation of Fabric Comfort Performance

  • Hong, Cheol-Jae
    • Science of Emotion and Sensibility
    • /
    • v.5 no.3
    • /
    • pp.67-74
    • /
    • 2002
  • Testing device was newly designed and built to measure the dynamic contact angle. The measurement was made using microscope interfaced with computerized image analysis system while the dynamic condition being controled using Instron. As specimens for the experiment, two different types of fibers, i.e., hydrophilic and hydrophobic, were prepared. In case of hydrophilic fiber, the increase of twist level gave the increase of contact angle. However, in hydrophobic yarn the increase of twist level gave the decrease of contact angle. When saline was used as a telling liquid, the increase of the concentration gave the increase of contact angle. The results rationalized clearly on the basis of known concepts could be used in designing fabric structure for the improvement of comport performance.

  • PDF

The Study of Transmission Spectrum of Twisted Nematic Liquid Crystal Doped with Phosphorus Micro Particles Apply for Vehicle Lamp

  • Minh-Tran, Anh
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.145-149
    • /
    • 2023
  • In this study, the spectrum changes induced from the doping of phosphor micro particles in a twist nematic liquid crystal cell was observed. The experimental results show that the achromatic transmission can be observed with a proper driving condition, which may be applied to the design of an achromatic liquid crystal device. In this paper, we tried to figure out the spectrum changes induced from the doping of phosphor micro particles. The experimental result of the phosphor powder doped twist nematic liquid crystal cell shows that the achromatic transmission and the wavelength linearly dependent transmission both can be observed with some proper driving conditions, respectively. The result is useful on developing an achromatic liquid crystal device and it can be applied for Vihicle lamp.

Optimization of Spring Layout for Minimizing Twist of Sheet Metal Pins in Progressive Shearing (프로그레시브 전단 공정에서 박판 핀 비틀림 최소화를 위한 스프링 배치 최적화)

  • Song, H.K.;Shim, J.K.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.23 no.8
    • /
    • pp.501-506
    • /
    • 2014
  • Progressive shearing with blanking dies is commonly employed to produce large quantities of tiny sheet metal electronic parts. Sheet metal pins, which are narrow and long, that are sheared with a progressive die set are often twisted. The twist in the sheet metal pins, which usually occurs in the final shearing operation, generally decreases with increasing blank holding force. The blank holding forces in all shearing operations are not the same because of different shearing positions and areas. In the current study, the optimal layout of the springs in a progressive die set to minimize the twist of the sheet metal pin is proposed. In order to find the holding force acting on the tiny narrow blanks produced with the proposed springs during the shearing process, the equivalent area method is used in the structural analysis. The shearing of the sheet-metal pin was simulated to compute the twist angle associated with the blank holding force. The constraint condition satisfying the pre-set blank holding force from the previous shearing operations was imposed. A design of experiments (DOE) was numerically implemented by analyzing the progressive die structure and by simulating the shearing process. From the meta-model created from the experimental results and by using a quadratic response surface method (PQRSM), the optimal layout of the springs was determined. The twist of sheet metal pin associated with the optimal layout of the springs found in the current study was compared with that of an existing progressive die to obtain a minimal amount of twist.

Preparation and Characterization of Stretch Fabric : Shrinkage and Elasticity Properties (신축성사 개발 및 물성평가 : 수축률 및 신축성의 평가)

  • Kang, Ki-Hyuk;Kim, Young-Sung;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.22 no.2
    • /
    • pp.173-179
    • /
    • 2010
  • In this study, we determine the stretch and shrinkage properties of conjugated yarns. The shrinkage(%) and elasticity(%) were determined by applying twist conditions of 0, 350, 800, 1000, 1200, 1400, 1600, 2000 T/M (twisting per meter). It is found that the shrinkage(%) and elasticity(%) gradually decreased with increasing T/M. Especially the elasticity(%) dramatically decreased over 1400 T/M condition. In contrast, it is showed that the handle and drapery properties decreased below 1000 T/M, which indicates that the optimal T/M condition could be 1000~1400. The effect of shrinkage(%) and elasticity(%) with different steam setting temperatures (60, 70, 80 and $90^{\circ}C$) was also determined. The shrinkage(%) decreased with increasing setting temperature, while the elasticity not changed. In this context, the optimal steam setting temperature could be $80^{\circ}C$ because it is not easy to weave with the yarns which was set below $80^{\circ}C$. The elasticity(%) decreased with increasing the density of warp and weft. To produce soft handle, excellent drapery and good stretch fabrics, the warp density needs to be reached by 90% of the ideal warp density. In the case of NaOH treatments to the fabrics, the elasticity(%) increased with increasing weight reduction. Therefore, this study have demonstrated that the conjugated yarns with core yarn and the SDY CD(cation dyeable spindraw yarn) as an effect yarn would be appropriate to produce excellent mixture-yarn, which displays clean appearance, good handle and excellent elasticity, The optimized conditions are as follows; 1000~1200 twist per meter, $80^{\circ}C$ steam setting temperature, 90% of ideal warp density and relaxation condition treated with 5g/l NaOH concentration.

Design optimization and vibratory loads analysis of active twist rotor blades incorporating single crystal piezoelectric fiber composites (단결정 압전섬유작동기를 사용한 능동 비틀림 로터 블레이드의 최적 설계 및 진동하중 해석)

  • Park, Jae-Sang;Shin, Sang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.85-92
    • /
    • 2007
  • This paper presents a design optimization of a new Advanced Active Blade Twist (AATR-II) blade incorporating single crystal Macro Fiber Composites (MFC) and conducts vibratory loads reduction analysis using an obtained optimal blade configuration. Due to the high actuation performance of the single crystal MFC, the AATR blade may reduce the helicopter vibration more efficiently even with a lower input-voltage as compared with the previous ATR blades. The design optimization provides the optimal cross-sectional configuration to maximize the tip twist actuation when a certain input-voltage is given. In order to maintain the properties of the original ATR blade, various constraints and bounds are considered for the design variables selected. After the design optimization is completed successfully, vibratory load reduction analysis of the optimized AATR-II blade in forward flight condition is conducted. The numerical result shows that the hub vibratory loads are reduced significantly although 20% input-voltage of the original ATR blade is used.

  • PDF

A Study on the Wind-Induced Response Characteristics of Freeform Shaped Tall Building using FSI Analysis (FSI 해석에 의한 비정형 초고층 빌딩의 풍응답 특성에 관한 연구)

  • Park, Sung Chul;Kim, Hyo Jin;Han, Sang Eul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.223-230
    • /
    • 2014
  • In this paper, the wind-induced response characteristics of freeform shaped tall building is studied by using FSI analysis. The analytical models are twist shaped ones at representing type of atypical tall building, and this study focused on the relationship between twist angle and wind acceleration. Firstly, 1-way FSI analysis is performed, so maximum lateral displacement of the analytical model for 100 years return period wind speed is calculated, then the elastic modulus of a structure that satisfies the constraints condition is evaluated. And 2-way FSI analysis is carried out. so acceleration of the analytical model for the evaluated modulus of elasticity and arbitrary density is predicted through time history analysis. The basic model is a set of a square shape, height is 400m, slenderness ratio is 8, and twist model is rotated at square model from 0 to 90 degrees at intervals of 15 degrees and from 90 to 360 degrees at intervals of 90 degrees. According to the result of predicting wind acceleration by the shape of each model, the wind vibration effect of square shape model is confirmed to be sensitive more than a twist shape ones.