• Title/Summary/Keyword: twin roll

Search Result 60, Processing Time 0.026 seconds

Microstructure and Mechanical Properties of Strip Casted Ag-27%Cu-25%Zn-3%Sn Brazing Alloy (브레이징용 Ag-27%Cu-25%Zn-3%Sn 박판 주조 스트립의 미세조직 및 기계적 특성 연구)

  • Kim, S.J.;Kim, M.C.;Lee, K.A.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.313-316
    • /
    • 2008
  • This work sought to examine the suitability of twin roll strip casting for Ag-27%Cu-25%Zn-3%Sn brazing alloy (BAg-7A) and to investigate the mechanical properties and microstructure of the strip. The effect of aging heat treatment on the properties was also studied,. This new manufacturing process has applications in the production of the brazing alloy. XRD and microstructural analysis of the Ag-27%Cu-25%Zn-3%Sn strip represented eutectic microstructure of a Cu-rich phase and a Ag-rich matrix regardless of heat treatment. The results of mechanical tests showed tensile strength of 470MPa, a significant enhancement, and an 18% elongation of the twin roll casted strip, due mainly to the solid solution strengthening of Zn atoms (${\sim}20%$) in the Cu-rich phases. Tensile results showed gradually decreasing strengths and increasing elongation with aging heat treatment. Microstructural evolution and fractography were also investigated and related to the mechanical properties.

  • PDF

Grain Growth Behavior of Heat Treated Mg-0.6wt.%Zn-0.6wt.%Ca Alloy Sheet Manufactured via Twin Roll Casting and Hot Rolling (트윈롤 주조 후 열간압연된 Mg-0.6wt.%Zn-0.6wt.%Ca 합금 판재의 열처리에 따른 결정립 성장 거동)

  • Lee, Hee Jae;Park, No Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.2
    • /
    • pp.74-81
    • /
    • 2022
  • This study aims to mitigate the microstructural heterogeneity arising from the manufacture of magnesium alloy plates using the twin roll casting (TRC) process. Homogenization was introduced through hot rolling and heat treatment, followed by confirmation of observed changes in the microstructure. Following the TRC process, the hot rolled 2mm plate exhibited a dendritic cast structure tilted in the roll rotation direction, while central segregation were developed. This nonuniform structure and central segregation disappeared upon heat treatment, followed by recrystallization to form uniform and fine grains. Abnormal grain growth (AGG) was observed over the course of heat treatment; grains exhibiting AGG occupied up to 75% of the total area after having held the sample at 400℃ for 64 h. The formation of coarse grains was also observed during heat treatment at 340℃ over a relatively long duration, though the maximum grain size was significantly smaller than that corresponding to the heat treatment at 400℃. AGG in the 400℃ heat treatment occurred because of movement of the grain boundary, which had been fixed prior as a result of the grain boundary fixing effect of the precipitation phase. The re-dissolution of the Ca2Mg5Zn5 precipitated phase over the long duration of the high-temperature annealing process caused the surrounding grains to disappear and regrow.

Optimum Shape Design Techniques on Direct Roller of Molten Metal Considering Thickness Control of Width Direction (폭방향 두께제어를 고려한 용탕직접 압연로울의 최적형상 설계기법)

  • Kang, C.G.;Kim, Y.D.;Jung, Y.J.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.73-85
    • /
    • 1997
  • The rolling force and roll deformation behavior in the twin roll type strip continuous casting process has been computed to estimate the thermal charcteristics of a caster roll. To calculation of rolling force, the relationship between flow stress and strain for a roll material and casting alloy are assumed as a function of strain-rate and temperature because mechanical properties of a casting materials depends on tempera- ture. The three dimensional thermal dlastic-plastic analysis of a cooling roll has also been carried out to obtain a roll stress and plastic strain distributions with the commercial finite element analysis package of ANSYS. Temperature fields data of caster roll which are provided by authors were used to estimated of roll deformation. Roll life considering thermal cycle is calculated by using thermal elastic-plastic analysis results. Roll life is proposed as a terms of a roll revolution in the caster roll with and without fine failure model on the roll surface. To obtain of plastic strain distributions of caster roll, thermomechan- ical properties of roll sleeve with a copper alloy is obtained by uniaxial tensile test for variation of temperature.

  • PDF

Study on the Continuous Forming of Natural Gas Hydrate Pellet using Twin Roll System (트윈롤 시스템을 이용한 천연가스 하이드레이트 펠릿의 연속성형)

  • Lee, Yun-Hu;Kim, Heung-Soo;Koh, Bong-Hwan;Song, Myung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.152-157
    • /
    • 2012
  • This study investigates compressive strength of ice pellet strip which is potential medium for Natural Gas Hydrate(NGH) extruded from die holes of Twin-roll Press for Continuous Pelletizing(TPCP). Recently, the prototype of TPCP is newly developed where ice powder is continuously fed and extruded into strip-type pellet between twin rolls. The system is specifically designed for future expansion towards mass-production of ice pellet strips or solid form of natural gas hydrate. It is shown that the compressive strength of pellet strip heavily depends on factors in extrusion process such as disk size, surface smoothness, ring size, taper shape, feeding mechanism, and rotational speed. Here, the mechanism of TPCP, along with compressive strength of pellets is discussed in terms of its feasibility for producing NGH pellets in the future.

Fabrication of AA4343 Alloys by Twin Roll Casting and their Properties (쌍롤 박판주조법에 의한 AA4343 합금의 제조 및 특성)

  • Euh, Kwang-Jun;Kim, Min-Gyun;Baek, Eun-Ji;Kim, Hyoung-Wook
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.646-648
    • /
    • 2011
  • 본 논문에서는 쌍롤 박판주조(Twin Roll Casting, TRC)법을 이용하여 AA4343 합금을 제작하였다. 주조시 롤 간격을 조절하여 냉각속도를 달리하였으며 인고트 주조(Ingot Casting, IC)법을 이용하여 제조된 합금과의 미세조직학적 차이와 이에 따른 물성 변화를 고찰하였다. TRC 및 IC로 제조된 합금을 냉간압연하였으며 압연 건전성을 평가하였다. 한편, 냉각속도별로 상이한 미세조직을 구현할 수 있는 스텝몰드(Step Mold Casting, SMC)법을 이용하여 제조된 합금의 냉각속도에 따른 미세조직 및 경도 차이를 조사하여 상대 비교하였다. 냉각속도가 빠를수록 주조 셀조직의 크기 및 공정 Si 입자의 크기가 감소하였으며 이로 인하여 경도가 증가되는 효과를 나타내었다. 주조시 생성된 공정 Si 입자의 크기는 압연에 의하여 그 크기의 변화가 거의 없었으며 열분석 결과 액상선 온도의 변화가 일부 발생하나 큰 차이가 없었다.

  • PDF

Microstructures of Twin Roll Cast Aluminum Alloys (쌍롤 주조법에 의해 제조한 알루미늄 합금의 미세조직)

  • Park, Jong-Woo;Kim, Hee-Soo;Baik, Nam-Ik
    • Journal of Korea Foundry Society
    • /
    • v.16 no.2
    • /
    • pp.149-157
    • /
    • 1996
  • Several aluminum based alloys were fabricated by a twin roll strip casting mill. As-cast microstructures and microsegregations of these aluminum alloys were investigated by means of optical microscope, scanning electron microscope and electron probe micro analysis. Clear distinction on microsegregation among the alloy systems was observed, that is, A1235 and A8011 alloys showed diffused segregation in the middle of the strip, while A3003 and A5086 alloys revealed a centerline segregation consisted of lamellar structure. Above center line segregation was resulted from enrichment of the alloying elements such as Mn, Fe, Cu, Si and eutictic reaction in central region of the alloy strip.

  • PDF

Microstructure and Tensile Property of Rapidly Solidified Al-Be alloy (급속응고한 Al-Be합금의 미세조직 및 인장특성)

  • Lee, In-Woo;Park, Hyun-Ho;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.15 no.5
    • /
    • pp.459-468
    • /
    • 1995
  • For high performance aerospace structures, the properties of highest priority are low density, high strength, and high stiffness(modulus of elasticity). Addition of beryllium decrease the density of the aluminum alloy and increase the strength and the stiffness of the alloy. However it is very difficult to produce the Al-Be alloy having useful engineering properties by conventional ingot casting, because of the extremely limited solid solubility of beryllium in aluminum. So, rapid solidification processing is necessary to obtain extended solid solubility. In this study, rapidly solidified Al-6 at% Be alloy were prepared by twin roll melt spinning process and single roll melt spinning process. Twin roll melt spun ribbons were extruded at $450^{\circ}C$ with reduction in area of 25 : 1 after vacuum hot pressing at $550^{\circ}C and 375^{\circ}C$. The microstructure of melt spun ribbon exhibited a refined cellular microstructure with dispersed Be particles. As advance velocity of liquid/solid interface increase, the morphology of Be particle vary from rod-like type to spherical type and the crystal structure of Be particle from HCP to BCC. These microstructural characteristics of rapidly solidified Al-6at.%Be alloy were described on the basis of metastable phase diagram proposed by Perepezko and Boettinger. The extruded ribbon consisted of recrystallized grains dispersed with Be particles and exhibited improved tensile property compared with that of extruded ingot.

  • PDF