• Title/Summary/Keyword: twin

Search Result 1,692, Processing Time 0.029 seconds

Study on the Effect of Emissivity for Estimation of the Surface Temperature from Drone-based Thermal Images (드론 열화상 화소값의 타겟 온도변환을 위한 방사율 영향 분석)

  • Jo, Hyeon Jeong;Lee, Jae Wang;Jung, Na Young;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.1
    • /
    • pp.41-49
    • /
    • 2022
  • Recently interests on the application of thermal cameras have increased with the advance of image analysis technology. Aside from a simple image acquisition, applications such as digital twin and thermal image management systems have gained popularity. To this end, we studied the effect of emissivity on the DN (Digital Number) value in the process of derivation of a relational expression for converting DN to an actual surface temperature. The DN value is a number representing the spectral band value of the thermal image, and is an important element constituting the thermal image data. However, the DN value is not a temperature value indicating the actual surface temperature, but a brightness value indicating high and low heat as brightness, and has a non-linear relationship with the actual surface temperature. The reliable relationship between DN and the actual surface temperature is critical for a thermal image processing. We tested the relationship between the actual surface temperature and the DN value of the thermal image, and then the radiation adjustment was performed to better estimate actual surface temperatures. As a result, the relation graph between the actual surface temperature and the DN value similarly show linear pattern with the relation graph between the radiation-controlled non-contact thermometer and the DN value. And the non-contact temperature after adjusting the emissivity was closer to the actual surface temperature than before adjusting the emissivity.

A Study on Increased Properties of Cellulose-Based Biodegradable Polymer Composites (셀룰로오스 기반 생분해성 고분자 복합재의 물성 증가에 관한 연구)

  • Sangjun Hong;Ajeong Lee;Sanghyeon Ju;Youngeun Shin;Teahoon Park
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.126-131
    • /
    • 2023
  • Growing environmental concerns regarding pollution caused by conventional plastics have increased interest in biodegradable polymers as alternative materials. The purpose of this study is to develop a 100% biodegradable nanocomposite material by introducing organic nucleating agents into the biodegradable and thermoplastic resin, poly(lactic acid), to improve its properties. Accordingly, cellulose nanofibers, an eco-friendly material, were adopted as a substitute for inorganic nucleating agents. To achieve a uniform dispersion of cellulose nanofibers (CNFs) within PLA, the aqueous solution of nanofibers was lyophilized to maintain their fibrous shape. Then, they were subjected to primary mixing using a twin-screw extruder. Test specimens with double mixing were then produced by injection molding. Differential scanning calorimetry was employed to confirm the reinforced physical properties, and it was found that the addition of 1 wt% CNFs acted as a reinforcing material and nucleating agent, reducing the cold crystallization temperature by approximately 14℃ and increasing the degree of crystallization. This study provides an environmentally friendly alternative for developing plastic materials with enhanced properties, which can contribute to a sustainable future without consuming inorganic nucleating agents. It serves as a basis for developing 100% biodegradable green nanocomposites.

On Simjae Cho Eon-yu's Theory of Learning (심재(心齋) 조언유(趙彦儒)의 학문론(學問論))

  • Cho, Hoon-young
    • The Journal of Korean Philosophical History
    • /
    • no.28
    • /
    • pp.331-362
    • /
    • 2010
  • Simjae defined the relationship between Learning of Classics and Learning of the Mind-and-Heart as mutually interdependent. Clarifying "righteousness and principle" lies within the purview of "knowledge" and cultivating the mind-and-heart based on such knowledge lies within the realm of "action." Learning of Classics and Learning of Controlling the Mind-and-Heart thus can be understood as relationship between knowledge and action. If Simjae's theory of knowledge and action is applied to the relationship between Learning of Classics and Learning of the Mind-and-Heart, we can derive the following conclusion. His assertion that "knowledge precedes action" indicates that classical studies to explore the principle of goodness must precede mind-and-heart studies to cultivate the mind. In fact, only when we know what is the right principle can we cultivate our mind based on that principle. However, Simjae attached importance to action in terms of its significance. This means that the Learning of the Mind-and-Heart is "eventually more important" than the Learning of Classics which explores the principle of goodness. Thus, when linked to his theory on knowledge and action, Simjae 's philosophy founded on the twin pillars of classical studies and mind-and-heart studies can be summarized: "One must first delve into the principle of goodness through Confucian classical studies and then rectify one's mind based on knowledge thus gained."

Generative Adversarial Network Model for Generating Yard Stowage Situation in Container Terminal (컨테이너 터미널의 야드 장치 상태 생성을 위한 생성적 적대 신경망 모형)

  • Jae-Young Shin;Yeong-Il Kim;Hyun-Jun Cho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.383-384
    • /
    • 2022
  • Following the development of technologies such as digital twin, IoT, and AI after the 4th industrial revolution, decision-making problems are being solved based on high-dimensional data analysis. This has recently been applied to the port logistics sector, and a number of studies on big data analysis, deep learning predictions, and simulations have been conducted on container terminals to improve port productivity. These high-dimensional data analysis techniques generally require a large number of data. However, the global port environment has changed due to the COVID-19 pandemic in 2020. It is not appropriate to apply data before the COVID-19 outbreak to the current port environment, and the data after the outbreak was not sufficiently collected to apply it to data analysis such as deep learning. Therefore, this study intends to present a port data augmentation method for data analysis as one of these problem-solving methods. To this end, we generate the container stowage situation of the yard through a generative adversarial neural network model in terms of container terminal operation, and verify similarity through statistical distribution verification between real and augmented data.

  • PDF

Characteristics and Manufacturing Technology of the Angbuilgu Treasure with Plate Pillars Decorated with a Dragon in Clouds (운룡주(雲龍柱) 보물 앙부일구의 특성과 제작 기술)

  • YUN Yonghyun;MIHN Byeonghee;KIM Sanghyuk
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.4
    • /
    • pp.24-37
    • /
    • 2023
  • This study analyzes the materials and external characteristics of the Angbu-ilgu, a kind of scaphe sundial, which was newly designated as a Korean Treasure in 2022. The Angbu-ilgu Treasure is owned by three institutions - the National Palace Museum Of Korea, Gyeongju National Museum, and Sungshin Women's University Museum - and is similar as a twin in its material, size, outward appearance, as well as production techniques that include casting, silver inlays, and metal joints. The Three-Treasure Angbu-ilgu is made of brass in the ratio of 90.6: 6.0: 1.8 with Cu: Zn: Pb. This composition clearly differs from Treasure No. 845, an Angbuilgu which has a composition ratio of 82.2: 3.7: 11.8 with Cu: Zn: Pb. In this new Angbu-ilgu Treasure, the hemisphere's stand has four vertical pillars sculpted in a dragon pattern and bilateral wings carved in a cloud pattern on the pillars, which are joined to the hemisphere's horizontal ring with rivets and silver solders, respectively. The dragon-in-clouds pillar (雲龍柱) shows the most outstanding formative beauty of the various Angbu-ilgu pillars produced in the late Joseon Dynasty. It can be seen that the altitude of the north pole engraved on the Angbu-ilgu was made after 1713. Production is, however, actually estimated to have occurred close to the 19th century, the era of the Jinju Kang family, who were professional Angbuilgu makers. Hopefully, this study will lead to a historical science and technology review with modern scientific instruments analyzing the materials and external characteristics of the three Angbu-ilgus designated as a Korean Treasure in 2022.

How Market Reacts on the Metaverse Initiatives? An Event Study (메타버스 투자 추진이 기업 가치에 미치는 영향 분석: 이벤트 연구 방법론)

  • Mina Baek;Jeongha Kim;Dongwon Lee
    • Information Systems Review
    • /
    • v.25 no.4
    • /
    • pp.183-204
    • /
    • 2023
  • Due to the COVID-19 pandemic, lots of occasions need to be held in online environment. This is the reason why "Metaverse" gets lots of attention in 2021. A number of companies made announcements on Metaverse, and this situation also boomed stock market. This paper investigates the relationship between Metaverse initiatives and business value of the firm (i.e., stock prices). We examine this relationship by using event study method with Lexis-Nexis News data from 2019 to 2021. The results indicate that Metaverse initiatives significantly impact positive influence on firm's value. In the technological perspective, technical factors affect more positive market returns, including Metaverse enablers (e.g., NFT, VR devices, digital twin) and common infrastructure (e.g., semiconductor, AI, cloud), and especially virtual environment was emphasized. Additionally, in the strategical perspective, radical innovation (e.g., pivoting, acquisition) impact more positive market return rather than incremental innovation (e.g., partnership, investment). Also, firms from non-service industries can achieve benefits from Metaverse initiatives rather than service industry in some degree.

Study on Changes in Vessel Traffic Services Due to Introduction of Maritime Autonomous Surface Ships (자율운항선박 도입에 따른 선박교통관제 업무 변화에 관한 연구)

  • Dae-won Kim;Myeong-ki Lee;Sang-won Park;Young-soo Park
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.430-436
    • /
    • 2023
  • Study on Changes in Vessel Traffic Services Due to Introduction of Maritime Autonomous Surface ShipsThe development of technologies related to Maritime Autonomous Surface Ships (MASS) has been actively progressing since the mid-2010s, focusing on themes such as collision avoidance, route planning, digital twin, and communication technologies. On the other hand, research on land-based infrastructure connected with MASS, such as logistics systems, port facilities, and vessel traffic services, has relatively received less attention. This study analyzed impact of emergence of MASS on existing vessel traffic service operations and proposed changes in control operations to prepare for its impact. To do this, current vessel traffic service operations were analyzed and elements of MASS technology that could affect vessel traffic control were identified. A survey was conducted among vessel traffic controllers to identify items related to the control of MASS. Results analyzed using the AHP method showed that preparation for emergency response and communication methods with MASS were the most important. Based on this, we were able to derive detailed plans for basic MASS control procedures and emergency response procedures based on data communication within maritime traffic control areas. MASS control procedures proposed in this study are expected to be used as a solution to resolve issues related to traffic safety of MASS in coastal areas.

Enhancing Project Integration and Interoperability of GIS and BIM Based on IFC (IFC 기반 GIS와 BIM 프로젝트 통합관리 및 상호 운용성 강화)

  • Kim, Tae-Hee;Kim, Tae-Hyun;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.54 no.1
    • /
    • pp.89-102
    • /
    • 2024
  • The recent advancements in Smart City and Digital Twin technologies have highlighted the critical role of integrating GIS and BIM in urban planning and construction projects. This integration ensures the consistency and accuracy of information, facilitating smooth information exchange. However, achieving interoperability requires standardization and effective project integration management strategies. This study proposes interoperability solutions for the integration of GIS and BIM for managing various projects. The research involves an in-depth analysis of the IFC schema and data structures based on the latest IFC4 version and proposes methods to ensure the consistency of reference point coordinates and coordinate systems. The study was conducted by setting the EPSG:5186 coordinate system, used by the National Geographic Information Institute's digital topographic map, and applying virtual shift origin coordinates. Through BIMvision, the results of the shape and error check coordinates' movement in the BIM model were reviewed, confirming that the error check coordinates moved consistently with the reference point coordinates. Additionally, it was verified that even when the coordinate system was changed to EPSG:5179 used by Naver Map and road name addresses, or EPSG:5181 used by Kakao Map, the BIM model's shape and coordinates remained consistently unchanged. Notably, by inputting the EPSG code information into the IFC file, the potential for coordinate system interoperability between projects was confirmed. Therefore, this study presents an integrated and systematic management approach for information sharing, automation processes, enhanced collaboration, and sustainable development of GIS and BIM. This is expected to improve compatibility across various software platforms, enhancing information consistency and efficiency across multiple projects.

A Study on Metaverse Framework Design for Education and Training of Hydrogen Fuel Cell Engineers (수소 연료전지 엔지니어 양성을 위한 메타버스 교육훈련 플랫폼에 관한 연구)

  • Yang Zhen;Kyung Min Gwak;Young J. Rho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.207-212
    • /
    • 2024
  • The importance of hydrogen fuel cells continues to be emphasized, and there is a growing demand for education and training in this field. Among various educational environments, metaverse education is opening a new era of change in the global education industry, especially to adapt to remote learning. The most significant change that the metaverse has brought to education is the shift from one-way, instructor-centered, and static teaching approaches to multi-directional and dynamic ones. It is expected that the metaverse can be effectively utilized in hydrogen fuel cell engineer education, not only enhancing the effectiveness of education by enabling learning and training anytime, anywhere but also reducing costs associated with engineering education.In this research, inspired by these ideas, we are designing a fuel cell education platform. We have created a platform that combines theoretical and practical training using the metaverse. Key aspects of this research include the development of educational training content to increase learner engagement, the configuration of user interfaces for improved usability, the creation of environments for interacting with objects in the virtual world, and support for convergence services in the form of digital twins.

Characteristic Analysis of Wireless Channels to Construct Wireless Network Environment in Underground Utility Tunnels (지하공동구 내 무선 네트워크 환경구축을 위한 무선채널 특성 분석)

  • Byung-Jin Lee;Woo-Sug Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.27-34
    • /
    • 2024
  • The direct and indirect damages caused by fires in underground utility tunnels have a great impact on society as a whole, so efforts are needed to prevent and manage them in advance. To this end, research is ongoing to prevent disasters such as fire flooding by applying digital twin technology to underground utility tunnels. A network is required to transmit the sensed signals from each sensor to the platform. In essence, it is necessary to analyze the application of wireless networks in the underground utility tunnel environments because the tunnel lacks the reception range of external wireless communication systems. Within the underground utility tunnels, electromagnetic interference caused by transmission and distribution cables, and diffuse reflection of signals from internal structures, obstacles, and metallic pipes such as water pipes can cause distortion or size reduction of wireless signals. To ensure real-time connectivity for remote surveillance and monitoring tasks through sensing, it is necessary to measure and analyze the wireless coverage in underground utility tunnels. Therefore, in order to build a wireless network environment in the underground utility tunnels. this study minimized the shaded area and measured the actual cavity environment so that there is no problem in connecting to the wireless environment inside the underground utility tunnels. We analyzed the data transmission rate, signal strength, and signal-to-noise ratio for each section of the terrain of the underground utility tunnels. The obtained results provide an appropriate wireless planning approach for installing wireless networks in underground utility tunnels.