• Title/Summary/Keyword: turning

Search Result 2,593, Processing Time 0.024 seconds

A Kinematics Analysis of Back Armstand 2 Somersault in Platform Dives a Case Study (플랫폼 다이빙 624C동작의 운동학적 사례분석)

  • Lee, Jong-Hee;So, Jae-Moo;Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.13-20
    • /
    • 2006
  • A platform diving with categorizing 624C motion was video taped and 3D kinematic variables were analyzed. This motion is consist of 3 parts from the headstand position to the act of turning after take-off. The results indicated that it took a very short time from the moment of take-off to the act of 1/2 turning because the turning motion has already started from preparing motion even before the fingertips have parted from the ground. Also, there was barely any jumping height due to the use of upper limbs segment and there was little difference in the moving distance compared to the standing events judging from horizontal movement of 1.1m. The horizontal velocity of the center of human body was increased before take-off while the vertical velocity was decreased right after take-off and the velocity of lower limbs segment was faster than the upper limbs segment showing contrary results to the standing events. In the aspects of angular velocity, the upper limbs segment starts the turning motion when take-off by rapidly extending its angular velocity while lower limbs segment make large angular velocity even before take-off.

A study on the chatter vibration characteristics simulation for cutting tooling of turning machine tool (터닝센터에서의 툴링과 채터 특성 시뮬레이션 연구)

  • Hwang, Joon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.274-278
    • /
    • 2014
  • Machining performance is often limited by chatter vibration at the tool-workpiece interface. Chatter vibration is a type of machining self-excited vibration which originated from the variation in cutting forces and the flexibility of the machine tool structure. Cutting tooling method is one of major factor to chatter vibration in turning process. Even though lots of cutting tooling methods are developed and used in machining process, precise analysis of cutting tooling effect in view of chatter vibration behavior. This study presents numerical and experimental approaches to verify and effects of various cutting tooling geometry and clamping method on the onset of chatter vibration. Acquired knowledge from this study will apply the optimal geometry design of cutting tooling and adjusting of machining process.

Measurement of Cutting Force in Diamond Turning Process (다이아몬드 터닝의 절삭력 측정용 tool holder를 이용한 미세절삭력 특성 연구)

  • 정상화;김상석;도철진;홍권희;김건희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.938-941
    • /
    • 2001
  • A tool holder system has been designed and builted to measure cutting forces in diamond turning. This system design includes a 3-component piezo-electric tranducer. Initial experiments with tool holder system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. In this research, tool holder system is modeled by considering the element dividing, material properties, and boundary conditions using MSC/PATRAN. Mode and frequency analysis of structure is simulated by MSC/NASTRAN, for the purpose of developing the effective design. In addition, tool holder system is verified by vibration test using accelerometer. Many cutting experiments have been conducted on 6061-T6 aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool force. Cutting velocity has been determined to have negligible effects between 4 and 21㎧.(6) Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces. Results suggest that a sample model may not be sufficient to describe the forces produced in the diamond turning process.

  • PDF

Spindle Speed Optimization for High-Efficiency Machining in Turning Process (선삭 공정에서의 고능률 가공을 위한 주축 회전수의 최적화)

  • Chol, Jae-Wan;Kang, You-Gu;Kim, Seok-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.138-145
    • /
    • 2009
  • High-efficiency and high-quality machining has become a fact of life for numerous machine shops in recent years. And high-efficiency machining is the most significant tool to enhance productivity. In this study, to achieve high-efficiency machining in turning process, a spindle speed optimization method was proposed based on a cutting power model. The cutting force and power were estimated from the cutting parameters such as specific cutting force, feed, depth of cut, and spindle speed. The time delay due to the acceleration or deceleration of spindle was considered to predict a more accurate machining time. Especially, the good agreement between the predicted and measured cutting forces showed the reliability of the proposed optimization method, and the effectiveness of the proposed optimization method was demonstrated through the simulation results associated with the productivity enhancement in turning process

Wear Characteristics of CBN Tools on Hard Turning of AISI 4140 (고경도강(AISI 4140, HrC60)의 하드터닝에서 가공속도 및 윤활조건 변경에 따른 CBN 공구의 마모 특성)

  • Yang, Gi-Dong;Park, Kyung-Hee;Lee, Myung-Gyu;Lee, Dong Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.799-804
    • /
    • 2014
  • Hard turning is a machining process for hardened materials with high surface quality so that grinding process can be eliminated. Therefore, the hard turning is capable of reducing machining time and improving productivity. In this study, hardened AISI4140 (high-carbon chromium steel) that has excellent yield strength, toughness and wear resistance was finish turned using CBN tools. Wear characteristics of CBN tool was analyzed in dry and MQL mixed with nano-particle (Nano-MQL). The dominant fracture mechanism of CBN tool is diffusion and dissolution wear on the rake surface resulting in thinner cutting edge. Abrasive wear by hard inclusion in AISI4140 was dominant on the flank surface. Nano-MQL reduced tool wear comparing with the dry machining but chip evacuation should be considered. A cryogenically treated tool showed promising result in tool wear.

A Study on the Improvement of Cutting Force and Surface Roughness in MQL Turning (MQL 선삭가공에서 절삭력과 표면거칠기 향상에 관한 연구)

  • Hwang Young-Kug;Chung Won-Jee;Jung Jong-Yun;Lee Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.83-91
    • /
    • 2006
  • At present, industry and researchers are looking for ways to reduce the use of lubricants because of ecological and economical reasons. Therefore, metal cutting is to move toward dry cutting or semi-dry cutting. One of the technologies is known as MQL(Minimum Quantity Lubrication) machining. This research presents an investigation into MQL machining with the objective of deriving the optimum cutting conditions for the turning process of SM4SC. To reach these goals several finish turning experiments were carried out, varying cutting speed, feed rate, oil quantity and so on, with MQL and flood coolant. The surface roughness and cutting force results of tests were measured and the effects of cutting conditions were analyzed by the method of Analysis of Variance(ANOVA). From the experimental results and ANOVA, this research proposed optimal cutting conditions to improve the machinability in MQL turning process.

A Study on the Development of Feature-Based NC Part Programming System 'FeaTURN' for Turning Operation (특징형상을 이용한 NC선반가공 프로그래밍 시스템 'FeaTURN'의 개발에 관한 연구)

  • 강신한;이재원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.38-45
    • /
    • 1993
  • The feature based modeling approach is useful for post-CAD related works such as process planning and NC part programming. This paper describes the development of 'FeaTURN' system which is feature based NC part programming system for turning operation. The programming task in 'FeaTURN' system becomes easy and effective with the assistance of feature icons. The manufacturing attributes can be handled toghther with the features during input procedure. The cutter location data (CLD) is determined by the processor module. The post process module converts the CL data to machine control data (MCD). Also, the system graphically displays the tool path.

Experimental Study on the Optimized Lubrication Conditions in MQL Turning of Workpieces with Taper Angle (테이퍼 각을 가진 소재의 MQL 선삭가공에서 최적 윤활 조건에 관한 실험적 연구)

  • Kim, Dong-Hyeon;Kang, Dong-Wi;Cha, Na-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.63-69
    • /
    • 2013
  • Many researchers are trying to reduce the use of lubrication fluids in metal cutting to obtain safety, environmental and economical benefits. The aim of this study is to determine the optimization lubrication conditions in minimum quantity lubrication(MQL) turning of workpieces with taper angle. This study has been considered about various conditions of MQL. The objective functions are cutting force and surface roughness. Design factors are nozzle diameter, nozzle angle, MQL supply pressure, distance between tool and nozzle and length of supply line. The cutting force and surface roughness were statistically analyzed by the use of the Box-Behnken method. As a results, optimum lubrication conditions were suggested and verification experiment has been performed. The results of this study are expected to help the selection of lubrication conditions in MQL turning.

A study on the turning ability of a DWT 8,000-ton oil/chemical tanker by real sea trials - A comparison between the semi-balanced rudder and the flap rudder - (실선시험에 의한 DWT 8,000톤 선박의 선회성능 - Semi-balanced rudder and flap rudder -)

  • Lee, Hyeong-Geun;An, Young-Su;Park, Byung-Soo;Jang, Choong-Sik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.2
    • /
    • pp.245-256
    • /
    • 2015
  • This study is intended to provide navigator with specific information necessary to assist the avoidance of collision and the operation of ships to evaluate the maneuverability of dead weight tonnage 8,000 tons Oil/Chemical tanker. The actual maneuvering characteristics of ship can be adequately judged from the results of typical ship trials. Author carried out sea trials based full scale for turning test in ballast condition and full load condition, semi balanced rudder and flap rudder. The turning circle maneuvering were performed on the starboard and port sides with $35^{\circ}$ rudder angle at the normal continuous rating. The results from tests could be compared directly with the standards of maneuverability of IMO and consequently the maneuvering qualities of the ship is full satisfied with its.

Study on the Line Simplification Method based on Turning Function for updating Digital Map (수치지도 갱신을 위한 선회함수 기반의 선형 단순화 기법 연구)

  • Park, Woo-Jin;Park, Seung-Yong;Woo, Ho-Seok;Yu, Ki-Yun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2009.04a
    • /
    • pp.15-17
    • /
    • 2009
  • The line simplification method based on the turning function is studied in this paper for conversion of ground plan data to geospatial data to update the digital map. This method eliminate vertices effectively by estimating the length and the angle between the vertices based on the turning function which is useful to express the shape of linear feature. As the result, this method shows high shape similarity, high elimination rate of vertices and 100% of satisfaction degree to the drawing rules. Thus this line simplification method is judged to be effective in updating the digital map with ground plans.

  • PDF