• Title/Summary/Keyword: turbulent-chemistry interaction

Search Result 37, Processing Time 0.02 seconds

Analysis of the Effects of Fuel-side Nitrogen Dilution and Pressure on NOx Formation of Turbulent Syngas Nonpremixed Jet Flame (질소희석과 압력이 석탄가스 난류 확산화염장의 NOx 생성특성에 미치는 영향 해석)

  • Park, Sangwoon;Lee, Jeongwon;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.63-64
    • /
    • 2012
  • The present study has numerically investigated the effects of the fuel-side nitrogen dilution on the precise structure and NOx formation characteristics of the turbulent syngas nonpremixed flames. Numerical results indicate that for highly diluted case, the flame structure is dominantly influenced by the turbulence-chemistry interaction and marginally modified by the radiation effect. On the other hand, no-dilution case with the longer flight time and the relatively intermediate scalar dissipation rate is influenced strongly by the radiative cooling as well as moderately by the turbulence-chemistry interaction.

  • PDF

Numerical Study on Flame Structure and Pollutant Formation for Syngas Turbulent Nonpremixed Swirling Flames (석탄가스 난류 선회 비예혼합 연소기의 화염구조 및 공해물질 생성의 해석)

  • Lee, Jeongwon;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.289-291
    • /
    • 2012
  • The present study numerically investigate detailed flame structure of the Syngas diffusion flames. In order to realistically represent the turbulence-chemistry interaction and the spatial inhomogeneity of scalar dissipation rate, the Eulerian Particle Flamelet Model(EPFM) with multiple flamelets has been applied to simulate the combustion processes and NOx formation in the syngas turbulent nonpremixed flames. And level-set approach is also utilized to account for the partially premixing effect at fuel and oxidizer injector in KEPRI nonpremixed combustor. Based on numerical results, the detailed discussion has been made for the precise structure and NOx formation characteristics of the turbulent syngas nonpremixed flames.

  • PDF

Numerical Study on Structure and Pollutant Formation for Syngas Turbulent Nonpremixed Swirling Flames (석탄가스 선회난류 비예혼합 화염장의 화염구조 및 NOx 배출특성 해석)

  • Lee, Jeong-Won;Kang, Sung-Mo;Kim, Yong-Mo;Joo, Yong-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.2
    • /
    • pp.10-17
    • /
    • 2009
  • The present study numerically investigate the effects of the Syngas chemical kinetics on the basic flame properties and the structure of the Syngas nonpremixed flames. In order to realistically represent the turbulencechemistry interaction and the spatial inhomogeneity of scalar dissipation rate, the Eulerian Particle Flamelet Model (EPFM) with multiple flamelets has been applied to simulate the combustion processes and NOx formation in the syngas turbulent nonpremixed flames. Validation cases include the Syngas turbulent nonpremixed jet and swirling flames. Based on numerical results, the detailed discussion has been made for the effects of the chemical kinetics, the flame structure, and NOx formation characteristics in the turbulent Syngas nonpremixed flames.

  • PDF

Flamelet and CMC Modeling for the Turbulent Recirculating Nonpremixed Flames (Flamelet 및 CMC 모델을 이용한 재순환 비예혼합 난류 화염장의 해석)

  • Kim, Gun-Hong;Kang, Sung-Mo;Kim, Yong-Mo;Kim, Seong-Ku
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.75-82
    • /
    • 2004
  • The conditional moment closure(CMC) model has been implemented in context with the unstructured-grid finite-volume method which efficiently handle the physically and geometrically complex turbulent reacting flows. The validation cases include a turbulent nonpremixed $CO/H_2/N_2$ Jet flame and a turbulent nonpremixed $H_2/CO$ flame stabilized on an axisymmetric bluff-body burner. In terms of mean flame field, minor species and NO formation, numerical results has the overall agreement with expermental data. The detailed discussion has been made for the turbulence-chemistry interaction and NOx formation characteristics as well as the comparative performance for CMC and flamelet model.

  • PDF

Laminar Flamelet Modeling of Combustion Processes and NO Formation in Nonpremixed Turbulent Jet Flames (Laminar Flamelet Model을 이용한 비예혼합 난류제트화염의 연소과정 및 NO 생성 해석)

  • Kim, Seong-Ku;Kim, Hoo-Joong;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.51-62
    • /
    • 1999
  • NOx formation in turbulent flames is strongly coupled with temperature, superequilibrium concentration of O radical, and residence time. This implies that in order to accurately predict NO level, it is necessary to develop sophisticated models able to account for the complex turbulent combustion processes including turbulence/chemistry interaction and radiative heat transfer. The present study numerically investigates the turbulent nonpremixed hydrogen jet flames using the laminar flamelet model. Flamelet library is constructed by solving the modified Peters equations and the turbulent combustion model is extended to nonadiabatic flame by introducing the enthalpy defect. The effects of turbulent fluctuation are taken into account by the presumed joint PDFs for mixture fraction, scalar dissipation rate, and enthalpy defect. The predictive capability of the present model has been validated against the detailed experimental data. Effects of nonequilibrium chemistry and radiative heat loss on the thermal NO formation are discussed in detail.

  • PDF

Laminar Flamelet Modeling of Combustion Processes and NO Formation in Nonpremixed Turbulent Jet Flames (Laminar Flamelet Model을 이용한 비예혼합 난류제트화염의 연소과정 및 NO 생성 해석)

  • Kim, Seong-Ku;Kim, Hoo-Joong;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.93-104
    • /
    • 1999
  • NOx formation in turbulent flames is strongly coupled with temperature, superequilibrium concentration of O radical, and residence time. This implies that in order to accurately predict NO level, it is necessary to develop sophisticated models able to account for the complex turbulent combustion processes including turbulence/chemistry interaction and radiative heat transfer. The present study numerically investigates the turbulent nonpremixed hydrogen jet flames using the laminar flamelet model. Flamelet library is constructed by solving the modified Peters equations and the turbulent combustion model is extended to nonadiabatic flame by introducing the enthalpy defect. The effects of turbulent fluctuation are taken into account by the presumed joint PDFs for mixture fraction, scalar dissipation rate, and enthalpy defect. The predictive capability of the present model has been validated against the detailed experimental data. Effects of nonequilibrium chemistry and radiative heat loss on the thermal NO formation are discussed in detail.

  • PDF

Transported PDF Model for Turbulent Nonpremixed Flames (수송 확률밀도함수모델을 이용한 비예혼합 난류화염장 해석)

  • Lee, Jeong-Won;Seok, Joon-Ho;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.2
    • /
    • pp.32-41
    • /
    • 2009
  • The transported probability density function model combined with the consistent finite volume (FV) method has been applied to simulate the turbulent bluff-body reacting flows. To realistically account for the non-isotropic turbulence effects on the turbulent bluff-body reacting flows, the present PDF transport approach is based on the joint velocity- turbulent frequency-composition PDF formulation. The evolution of the fluctuating velocity of a particle is modeled by a simplified Langevin equation and the particle turbulence frequency is represented by the modified Jayesh - Pope model. Effects of molecular diffusion are represented by the interaction by exchange with the mean (IEM) mixing model. To validate this hybrid FV/PDF transport model, the numerical results are compared with experimental data for the turbulent bluff-body reacting flows.

  • PDF

Prediction of Turbulent Premixed Flamefield in Bunsen Burner (Bunsen Buner 난류 예혼합 화염장의 해석)

  • Cho, Ji-Ho;Kim, Hoo-Joong;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.195-199
    • /
    • 2003
  • The stoichiometric methan/air premixed turbulent flames at the axisymmetric Bunsen burner situation are numerically investigated. To account for the chemistry-turbulence interaction in the turbulent premixed flames, the steady laminar flamelet library method has been adopted. The flame front is tracked by using the Level-Set Approach. Turbulence is represented by the ${\kappa}-{\varepsilon}$ modeling with a Pope's correction. The detailed comparison between prediction and measurement has made for the flame field in terms of velocity, turbulent kinetic energy, and normarlized temperature.

  • PDF

Numerical Study on Flame Structure and Pollutant Formation for Syngas Turbulent Nonpremixed Swirl Burner (석탄가스 선회난류 연소기의 화염구조 및 공해물질 배출특성 해석)

  • Lee, Jeong-Won;Kang, Sung-Mo;Kim, Yong-Mo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.449-452
    • /
    • 2007
  • The present study numerically investigate the effects of the Syngas chemical kinetics on the basic flame properties and the structure of the Syngas diffusion flames. In order to realistically represent the turbulence-chemistry interact ion and the spatial inhomogeneity of scalar dissipation rate. the Eulerian Particle Flamelet Model(EPFM) with multiple flamelets has been applied to simulate the combustion processes and NOx formation in the syngas turbulent nonpremixed flames. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the EPFM model can effectively account for the detailed mechanisms of NOx format ion including thermal NO path, prompt and nitrous NOx format ion, and reburning process by hydrocarbon radical without any ad-hoc procedure. validation cases include the Syngas turbulent nonpremixed jet and swirling flames. Based on numerical results, the detailed discussion has been made for the sensitivity of the Syngas chemical kinetics as well as the precise structure and NOx formation characteristics of the turbulent Syngas nonpremixed flames.

  • PDF

Numerical Study on Turbulent Nonpremixed Pilot Stabilized Flame using the Transported Probability Density Function Model (수송확률밀도함수 모델을 이용한 난류비예혼합 파일럿 안정화 화염장 해석)

  • Lee, Jeong-Won;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.15-21
    • /
    • 2010
  • The transported probability density function(PDF) model has been applied to simulate the turbulent nonpremixed piloted jet flame. To realistically account for the mixture fraction PDF informations on the turbulent non-premixed jet flame, the present Lagrangian PDF transport approach is based on the joint velocity-composition-turbulence frequency PDF formulation. The fluctuating velocity of stochastic fields is modeled by simplified Langevin model(SLM), turbulence frequency of stochastic fields is modeled by Jayesh-Pope model and effects of molecular diffusion are represented by the interaction by exchange with the mean (IEM) mixing model. To validate the present approach, the numerical results obtained by the joint velocity-composition-turbulence frequency PDF model are compared with experimental data in terms of the unconditional and conditional means of mixture fraction, temperature and species and PDFs.