• 제목/요약/키워드: turbulent flow control

검색결과 191건 처리시간 0.029초

A computational approach to the simulation of controlled flows by synthetic jets actuators

  • Ferlauto, Michele;Marsilio, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • 제2권1호
    • /
    • pp.77-94
    • /
    • 2015
  • The paper focuses on the integration of a non-linear one-dimensional model of Synthetic Jet (SJ) actuator in a well-assessed numerical simulation method for turbulent compressible flows. The computational approach is intended to the implementation of a numerical tool suited for flow control simulations with affordable CPU resources. A strong compromise is sought between the use of boundary conditions or zero-dimensional models and the full simulation of the actuator cavity, in view of long-term simulation with multiple synthetic jet actuators. The model is integrated in a multi-domain numerical procedure where the controlled flow field is simulated by a standard CFD method for compressible RANS equations, while flow inside the actuator is reduced to a one-dimensional duct flow with a moving piston. The non-linear matching between the two systems, which ensures conservation of the mass, momentum and energy is explained. The numerical method is successfully tested against three typical test cases: the jet in quiescent air, the SJ in cross flow and the flow control on the NACA0015 airfoil.

압력진동을 저감하기 위한 sub-cavity를 가진 초음속 공동유동에 대한 실험 및 수치해석적 연구 (Experimental/Computational Study on the Supersonic Cavity Flow with a Sub-Cavity to Reduce the Pressure Oscillation)

  • 임채민;이영기;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3009-3014
    • /
    • 2007
  • The effectiveness of passive control techniques for alleviating the pressure oscillation generated in a supersonic cavity flow was investigated numerically and experimentally, respectively. The control device includes a sub-cavity installed near the leading edge of a rectangular cavity. Time-dependent supersonic cavity flow characteristics with turbulent features were examined by using the three-dimensional, mass-averaged Navier-Stokes computation based on a finite volume scheme and large eddy simulation. The results show that the pressure oscillation near the trailing edge dominates overall time-dependent cavity pressure variations. Such an oscillation can be attenuated more significantly in the presence of the sub-cavity compared with the cavity without sub-cavity, and a larger sub-cavity leads to better control performance.

  • PDF

Large-Eddy Breakup Device가 수중운동체의 저항에 미치는 영향 (Influence of a Large-Eddy Breakup Device on Drag of an Underwater Vehicle)

  • 김준석
    • 한국군사과학기술학회지
    • /
    • 제22권6호
    • /
    • pp.773-783
    • /
    • 2019
  • A numerical analysis of a turbulent flow with a 'large-eddy breakup device(LEBU)' was performed to investigate the influence of the device on the drag of underwater vehicle using commercial CFD code, FLUENT. In the present study, the vehicle drag was decomposed to skin-friction coefficient(Cf) and pressure coefficient(Cp). The variation of the vehicle Cf and Cp were observed with changing location of the device and Reynolds number. As a result, the device decreased the vehicle Cf because it suppressed the turbulent characteristics behind the device. The larger Reynolds number, the higher reduction effect when the device was placed in front part of, and near the vehicle. On the other hand, the device increased/decreased the vehicle Cp with increasing/decreasing turbulent kinetic energy at recirculating flow region behind the vehicle. The total drag change by the device was caused by Cp rather than Cf.

Bump가 있는 초음속 흡입구 유동장의 수치적 연구 (THE NUMERICAL STUDY ON THE SUPERSONIC INLET FLOW FIELD WITH A BUMP)

  • 김상덕;송동주
    • 한국전산유체공학회지
    • /
    • 제10권3호
    • /
    • pp.19-26
    • /
    • 2005
  • The purpose of this paper is the study on the characteristics of an inlet system with shock/boundary layer interactions by using various types of bumps which are substituted for the conventional bleeding system in supersonic inlet. in this study a comprehensive numerical analysis has been performed to understand the three-dimensional flow field including shock/boundary layer interaction and growth of turbulent boundary layer that might occur around a three-dimensional bump in a supersonic inlet. The characteristics of boundary layer seen in the current numerical simulations indicate the potential capability of a three-dimensional bump to control shock/boundary layer interaction in supersonic inlets.

회전브러시가 장착된 진공청소기 흡입장치의 난류유동에 대한 수치해석 (NUMERICAL STUDY OF TURBULENT FLOW IN A INTAKE PART OF VACUUM CLEANER WITH ROLLING BRUSH)

  • 박태선
    • 한국전산유체공학회지
    • /
    • 제17권2호
    • /
    • pp.58-64
    • /
    • 2012
  • Turbulent flows in a intake part of vacuum cleaner are studied by RANS simulations. The governing equations are solved by the SIMPLE algorithm based on the finite volume method of the unstructured grid system. The predicted results show that the suction performance is closely related to the variation of flow structure in the intake part. In order to investigate for the cleaning of bedclothes and carpet without sticking, several design changes are applied. The introduction of a solid cylinder in the intake part changes vortical structures significantly. Based on this result, a new design with spiral brushes is proposed. The design shows a good behavior for the suction performance and the flow control.

Three-dimensional numerical simulation of turbulent flow around two high-rise buildings in proximity

  • Liu, Min-Shan
    • Wind and Structures
    • /
    • 제1권3호
    • /
    • pp.271-284
    • /
    • 1998
  • This paper uses the numerical simulation to investigate the interference effect of 3-D turbulent flow around two high rise buildings in proximity at the different relative heights, gaps, and wind velocities. The computer program used to carry out the simulation is based on the control volume method and the SIMPLEST algorithm. The ${\kappa}-{\varepsilon}$ model was used to simulate turbulence effects. Since the contracted flow between two adjacent buildings enhances the strength of vortex shedding from the object building, the pressure coefficient on each side wall of the object building is generally increased by the presence of apposed building. The effect is increased as the relative height or the gap between the two buildings decreases. The velocity on the vertical center line between two buildings is about 1.4 to 1.5 times the upstream wind velocity.

리블렛 표면을 이용한 난류 유동해석 및 마찰 저항감소 (Turbulent Flow Analysis and Drag Reduction by Riblet Surfaces)

  • 윤현식;구본국;전호환
    • 대한조선학회논문집
    • /
    • 제41권4호
    • /
    • pp.59-67
    • /
    • 2004
  • Direct numerical simulations of turbulent flows over riblet-mounted surfaces are performed to educe the mechanism of drag reduction by riblets. Numerical simulations are performed for flow fields with R $e_$\tau$/=180. For riblet ridge angle $\alpha$=60$^{\circ}$, two different riblet spacings of $s^+/=20 and 40 are used in this study. The computed drag on the riblet surfaces is in good agreement with existing computational and experimental data. The mean velocity profiles show upward and downward shifts in the log-law for drag-decreasing and drag-increasing cases, respectively Turbulence statistics above the riblets are computed and compared with those above a flat plate. The purpose of this study is in two categories: first, to understand the drag reduction mechanism on riblet surface, second, to verify our own code by comparison of the present results with those from previous studies.udies.

반도체 약액용 자동제어 플라스틱 밸브의 내부 유동해석 (Internal Flow Analysis and Structural Design in Plastic Automatic Control Valve for the Semiconductor Chemical Liquid)

  • 이규훈;이응석;이민기;김진수;배일진
    • 한국생산제조학회지
    • /
    • 제21권2호
    • /
    • pp.311-315
    • /
    • 2012
  • Diaphragm type noncontact automatic control valve is a valve for controling acidic PR(Photo Resist) liquid used in the semiconductor process. PR is photosensitive liquid that changes phases depending on light transmittance. PR is very toxic and expensive; the purpose of this paper is to address methods that prevent loss due to leaks. The design of noncontact precise automatic control valve is expected to play an important role in controlling fluid flow, therefore influencing energy conservation and environmental improvement. In this paper, diaphragm type automatic control valve's part design, assembly and simulation are introduced. Also, through the analysis of fluid flow the valve's internal velocity, pressure, and turbulent intensity are interpreted. This paper proposes to contribute to the improvement of the valve's performance.

분지관 혼합기의 난류 혼합에 대한 유동 가시화 연구(I) (Flow visualization Study on the Turbulent Mixing of Two Fluid Streams(I))

  • 김경천;신대식;이부환
    • 대한기계학회논문집B
    • /
    • 제22권1호
    • /
    • pp.25-33
    • /
    • 1998
  • An experimental study has been carried out to obtain optimal conditions for turbulent mixing of two fluid streams at various angle branches by a flow visualization method. The main purpose of this study is the utilization of flow visualization method as a fast and efficient way to find the optimal mixing conditions when several flow control parameters are superimposed. It is verified that the optimal conditions estimated by flow visualization method have good agreement with the concentration field measurements. The results demonstrate that the diameter ratio is mainly attributed to the mixing phenomena than the branch pipe angle and the Reynolds number. The most striking fact is that there exists the best diameter ratio, d/D.ident. O.17, which requires the minimum momentum ratio in the range of the present experiment. The velocity ratio for the optimal mixing condition has a value within 2 to 16 according to the different flow parameters.